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Foreword 

Emerging vehicle technologies have the potential to make driving not only more 
comfortable but also safer. Many motor vehicle crashes result from mistakes made by 
drivers. Advanced driver assistance systems (ADAS), common in today’s new vehicles, have 
the ability to warn the driver or even intervene automatically in many situations to help 
the driver avoid a crash. These technologies have a clear role to play in our efforts to 
minimize vehicle crashes and save lives on our roads. However, it is important to have 
realistic expectations regarding the magnitudes of the safety benefits offered by technology, 
as well as how soon those benefits will be seen. 

This report presents a methodology to estimate safety benefits of ADAS and describes 
potential reductions in motor vehicle crashes, injuries, and deaths that ADAS and partial 
vehicle automation technologies may prevent in the future. This study also examined many 
factors that will influence how large those benefits will be and how quickly they will 
materialize, as well as the continued need to invest in a comprehensive array of traffic 
safety measures. This report should be of interest to researchers, transportation officials, 
practitioners such as automobile manufacturers, as well as other traffic safety 
stakeholders. 

 
 
         C. Y. David Yang, Ph.D. 
 
        President and Executive Director 
        AAA Foundation for Traffic Safety 
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Executive Summary 

Background and Objective 

Vehicle technology advancements are a crucial piece of the Safe System Approach, with the 
potential to contribute to significant transportation safety gains over the next several 
decades. Advanced driver assistance systems (ADAS) technologies represent a range of 
advanced vehicle functions that increase driver comfort by automating parts of the driving 
task under certain conditions, as well as increase safety by warning drivers of dangerous 
situations and braking or steering automatically to prevent or mitigate collisions. ADAS 
technologies have become increasingly popular in vehicles over the last several years, yet 
there is substantial uncertainty in the likely magnitudes of their safety benefits, as well as 
the rate at which safety benefits will be realized.  

The objective of this work was to estimate how many motor vehicle crashes, injuries, and 
deaths ADAS technologies are likely to prevent over the next 30 years, taking into account 
the many complex and interconnected factors affecting the availability, effectiveness, 
uptake, and use of current as well as future ADAS technologies.  

Methods 

This study involved four key steps: (a) defining the combinations of ADAS technologies 
likely to be available on vehicles during the study period; (b) estimating the probabilities 
that vehicles equipped with specific ADAS technologies would avoid various types of 
crashes; (c) modelling broader system dynamics affecting ADAS technology adoption, 
diffusion, and safety performance over time; and (d) using the results of the preceding steps 
to estimate the numbers of crashes, injuries, and deaths that will be avoided due to ADAS 
technologies each year through 2050.  

First, the research team defined specific combinations of technologies, informed by existing 
literature and market projections, broadly representative of the combinations of ADAS 
technologies expected to be available on vehicles over the time horizon of the study: 
(a) collision warning systems only; (b) collision warning systems plus adaptive cruise 
control; (c) collision intervention systems (plus warning systems and adaptive cruise 
control); and (d) dynamic driving assistance (plus collision intervention, warning systems, 
and adaptive cruise control); as well as vehicles with no ADAS technologies. The study did 
not examine higher levels of automation, which are not currently available to consumers in 
the U.S. market, as there were no data to inform assumptions about their uptake or 
performance. 

The team then created a detailed matrix to categorize types of crashes that these 
technologies did versus did not have the potential to prevent. For crashes deemed 
potentially preventable, the probability of successful crash avoidance was estimated for 
vehicles equipped with the above-described combinations of technologies, taking into 
account the type of crash, the impact of contextual factors present in crashes that might 
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influence system performance (e.g., weather, lighting conditions), as well as the probability 
that the relevant technology would be in use at the time. 

Next, the team developed a causal loop diagram to depict key variables and causal 
relationships hypothesized to influence technology availability, uptake, use, and 
performance over time in relation to many interrelated factors hypothesized to influence 
them. This theoretical model was converted into a simulation model using a system 
dynamics modeling approach.  

This model was then used to simulate potential future crashes annually through 2050 
based on data from individual crashes that occurred in years 2017–2019 and an assumed 
1% annual growth rate of total vehicle travel. For each simulated future crash, the 
probability that ADAS technologies on one or more of the vehicles involved would avoid the 
crash was estimated based on the probability that that each vehicle in the crash would be 
equipped with the relevant technology, the probability that the technology would be in use 
at the time, and the probability that it would successfully avoid the crash, given the 
capability and maturity of the technology as well as the circumstances of the crash. Results 
were aggregated over all simulated crashes in each year to estimate the numbers of 
crashes, injuries, and deaths that ADAS technologies would be expected to prevent, 
annually, as well as cumulatively over the 30-year period 2021–2050. Three sets of results 
are provided throughout the report: results based on assumptions that the research team 
regarded as most probable, as well as results based on alternative scenarios in which 
uptake and use of ADAS technologies were higher or lower than assumed in the main 
analysis. 

Results and Discussion 

Using the above-described simulation methodology, the current study estimates that ADAS 
technologies will prevent approximately 25% of all crashes, 24% of nonfatal injuries, and 
33% of fatalities that would otherwise occur in 2050 if ADAS availability, uptake, 
effectiveness, and use were to remain at their 2017–2019 levels. Cumulatively, these 
technologies are anticipated to prevent approximately 37 million crashes, 14 million 
injuries, and 249,000 fatalities in the 30 years from 2021 through 2050, which represent 
approximately 16% of crashes and injuries, and 22% of fatalities predicted to occur on U.S. 
roads over the same 30-year period without these technologies. 

Variation in ADAS technology uptake and use, however, could contribute to different safety 
outcomes. For example, in a scenario in which ADAS technology uptake and use are higher 
than expected, up to 38% of fatalities and 27%–28% of total crashes and nonfatal injuries in 
2050 might be prevented by ADAS. In a scenario where uptake and use were lower than 
expected, ADAS could prevent as few as 22% of fatalities and 16%–17% of total crashes and 
injuries in 2050. Even in the more pessimistic scenario, however, ADAS technologies are 
predicted to prevent a total of nearly 8.7 million injuries and save more than 150,000 lives 
cumulatively by 2050. Thus, it is clear that driver support features already available today, 
when deployed at scale, have the potential to contribute to major improvements in road 
safety. 
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Although the results of the current study suggest that increases in the availability, uptake, 
use, and effectiveness of ADAS technologies over the next 30 years will contribute to 
substantial reductions in motor vehicle crashes, injuries, and deaths, there are still many 
scenarios and contexts in which ADAS technologies may not be able to intervene effectively 
or at all. Even in the optimistic scenario—in which ADAS is predicted to prevent more than 
16.8 million injuries and save nearly 300,000 lives cumulatively in years 2021–2050, more 
than 73 million people would still be injured and nearly 850,000 would still die in crashes 
over the same 30-year period. Thus, while ADAS technologies have the potential to prevent 
large numbers of injuries and save many lives, there remains a clear need to continue to 
invest in other proven traffic safety measures in addition to vehicle technology. 

The model and its results should be interpreted as a tool and test bed to consider the 
complex dynamics that may influence safety outcomes, and several limitations should be 
noted. The study does not account for the potential safety impacts of more advanced crash 
avoidance technologies or higher levels of vehicle automation that are not yet available on 
the U.S. market but that may emerge in the future. The study also does not account for 
other vehicle technologies besides ADAS (e.g., technology to limit speed, prevent impaired 
driving, or protect occupants in the event of a crash), other traffic safety policies (e.g., 
changes to road design or laws), other factors beyond transportation safety policy that may 
influence the uptake of vehicles equipped with ADAS (e.g., vehicle electrification policy, 
cybersecurity concerns), or factors that may influence traffic safety more broadly (e.g., 
changes in land use or commuting patterns, the COVID-19 pandemic). The numbers of 
deaths and injuries potentially prevented by ADAS were estimated by totaling the numbers 
of injuries and deaths in crashes that ADAS was predicted to prevent; actual numbers of 
deaths and injuries prevented could be somewhat greater if ADAS helps to reduce the 
impact speed of some crashes that still occur. Additionally, further research is needed to 
estimate safety benefits of ADAS disaggregated by demographic group and geography to 
examine potential inequities in access to new technologies and their anticipated safety 
benefits.  

In conclusion, this research makes an important contribution to the field by estimating how 
many crashes, injuries, and deaths ADAS technologies are expected to prevent in the 
coming years, taking into account many interconnected factors and sources of uncertainty 
that are expected to influence the safety benefits of ADAS and the rate at which those 
benefits accrue. Overall, results corroborate previous research findings that while driver 
assistance and vehicle automation technologies will provide substantial safety benefits in 
the coming years, they are unlikely to eliminate all or most traffic fatalities and injuries 
within the next few decades. Thus, consistent with the Safe System Approach, which calls 
for a layered, redundant approach to safety, there remains a clear need to continue to 
invest in a wide array of proven traffic safety measures, including but not limited to vehicle 
technology. 
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Introduction  

As the United States adopts a Safe System Approach to transportation safety, stakeholders 
are working to accelerate improvements across key transportation system domains (e.g., 
roadway design, speed management, vehicle safety innovation). Vehicle technology 
advancements are a crucial piece of the Safe System Approach, with the potential to 
contribute to significant transportation safety gains over the next few decades. In fact, the 
U.S. Department of Transportation, the U.S. Safe System consortium, the National Safety 
Council, and numerous other organizations and agencies have called for expanded and 
accelerated availability of advanced driver assistance systems (ADAS) in all new vehicles as 
an essential component to advancing Safe System implementation (JHCIRP, 2021; NSC, 
2022; U.S. DOT, 2022). 

ADAS technologies represent a range of advanced vehicle functions that can serve to 
notably improve driving safety through driver alerts and warnings, as well as crash 
avoidance and mitigation maneuvers. They can also serve to increase driver comfort by 
assisting with common driving and parking tasks. ADAS technologies have become 
increasingly popular in vehicles over the last several years. Current estimates indicate that 
nearly all new vehicles available in the United States have at least one ADAS technology, 
with the most common technologies including warning systems (e.g., blind spot detection 
(BSD)) (AAA, 2019; SBD Automotive, 2018). More recently, active ADAS crash avoidance 
systems have become increasingly popular and prevalent as well (e.g., automatic emergency 
braking (AEB)) (AAA, 2019; SBD Automotive, 2018). The National Highway Traffic Safety 
Administration (NHTSA) provides annual updates on progress made by 20 automakers 
regarding the increased adoption of low-speed AEB, for example (NHTSA, 2020). 

A growing body of literature indicates that ADAS technologies have substantial safety 
benefits. For example, research from the Insurance Institute for Highway Safety (IIHS) and 
Highway Loss Data Institute (HLDI), utilizing police-reported crash data and insurance 
claims, estimated that forward collision warning (FCW) may reduce front-to-rear crashes by 
27% and front-to-rear crashes with injuries by as much as 20%; benefits more than doubled 
when AEB was used in conjunction with FCW (Cicchino, 2017; HLDI, 2020; IIHS, 2020). 
Finally, other prevalent ADAS warning technologies, such as lane departure warning 
(LDW) systems and BSD have also demonstrated notable benefits, with research indicating 
20%–25% reductions in relevant injury crashes (Cicchino, 2018a, 2018b; HLDI, 2020; IIHS, 
2020). 

While early research indicates promising safety benefits from ADAS technologies, there is 
substantial uncertainly in how quickly, and the extent to which, widespread safety benefits 
might be realized across the United States. ADAS diffusion into the U.S. vehicle fleet is 
affected by several factors, including price, technological maturity, and how quickly 
technologies become standard in vehicles. Several agencies, including the National 
Transportation Safety Board (NTSB), have called for increased adoption of ADAS 
technologies as standard packages on vehicles; however, there are several industry and 
policy dynamics that affect these processes (NTSB, 2022; VSI Labs, 2020). Even with 
increased ADAS diffusion, there are several causal factors that affect crash occurrence, and 
therefore, several factors that determine the extent of ADAS safety benefits. For example, 
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crashes are often the result of factors operating across several domains, including factors in 
the built environment (e.g., roadway design, land use), at the vehicle level (e.g., technology, 
functionality), related to a person’s decision making (e.g., vehicle maneuvers, decision to 
turn on/off ADAS technology), and associated with environmental conditions (e.g., icy 
conditions, poor lighting). ADAS technologies will help reduce crashes and improve safety 
only to the extent that they help to address or overcome one or more critical links in a 
crash’s causal chain, and perform in the conditions in which crashes are likely to occur. 
Even under optimal deployment of redundant ADAS technologies, the design domains in 
which sensors will reduce crashes are limited. While many new vehicles sold today offer 
AEB with pedestrian detection, most pedestrian fatalities occur on relatively high-speed 
roads and in darkness, conditions in which sensors used in current generation systems do 
not perform well (AAA, 2021; Cicchino, 2022; Combs et al., 2019; NCSA, 2022). 
Additionally, there are several prevalent crash scenarios in which current ADAS 
technologies do not perform well. For example, straight-crossing-path (“T-bone”) crashes 
and crashes involving a vehicle turning across the path of another vehicle represent nearly 
40% of fatalities in two-vehicle crashes. While drivers might expect technologies such as 
automatic emergency braking (AEB) systems to aid in these scenarios, recent research 
indicates that many systems often fail to avoid or even mitigate such crashes (AAA, 2022). 
Given the overall complexity in diffusion rates, crash causal chains, and technological 
capability and maturity, there is considerable uncertainty regarding the potential safety 
gains that might be realized by ADAS technologies over the next several years in the 
United States.  

The overall objective of the current study is to estimate the number of motor vehicle 
crashes, injuries, and deaths that existing ADAS technologies are likely to prevent over the 
next 30 years, accounting for the complex and interconnected factors affecting the 
availability, uptake, use, and performance of the technologies. Results are provided across a 
range of scenarios to demonstrate potential impacts of assumptions on safety outcomes.  

Methods 

The purpose of this study was to estimate the numbers of deaths, nonfatal injuries, and 
crashes on U.S. roads that would potentially be prevented by ADAS and partial vehicle 
automation technology each year through 2050 given realistic assumptions regarding 
changes over time in ADAS technology adoption, use, and effectiveness, as well as in the 
total amount of U.S. vehicle travel. The study approach involved four major sub-steps, 
listed below and outlined in Figure 1.  
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Figure 1. Key project tasks and steps. 

1. Defining combinations of ADAS technologies (“packages”) available on vehicles 
during the study period. 

2. Estimating crash avoidance probabilities for ADAS, by technology package and 
crash type 

3. Modelling dynamics affecting the diffusion, use, and effectiveness of ADAS. 
4. Estimating future numbers of crashes, injuries, and deaths potentially avoided 

by ADAS. 

The following sections describe the methodology and information sources used in each of 
these specific steps. 
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Step 1: Defining combinations of ADAS technologies (“packages”) on vehicles 

This task involved defining and classifying the various combinations of ADAS technologies 
likely to be available on vehicles in the United States during the study period. Within this 
task, the team made several decisions and assumptions about the technologies and the 
types of vehicles on which they would be installed. Core assumptions and decisions are 
outlined below. 

Scoping Decisions 

The research team made several overarching design, data, and analytic decisions from the 
outset to shape this work. A time horizon of 30 years was selected, such that the model 
estimates safety outcomes each year through 2050, based on crash data from 2017–2019. 
The study considered ADAS and partial vehicle automation technologies up to and 
including SAE Level 2, i.e., driver support features that provide simultaneous steering and 
braking/acceleration support to the driver. Technologies considered in the current study are 
shown in Table 1. 

Table 1. ADAS technologies considered in this study. Definitions from AAA (2019). 

ADAS technology Definition 

Blind spot warning 
Detects vehicles to rear in adjacent lanes while driving and alerts driver 
to their presence. 

Pedestrian detection 
Detects pedestrians in front of vehicles and alerts drivers to their 
presence. 

Lane departure warning 
Monitors vehicle's position within driving lane and alerts driver as the 
vehicle approaches or crosses lane markers. 

Forward collision warning Detects impending collision while traveling forward and alerts driver. 

Adaptive cruise control 
Controls acceleration and/or braking to maintain a prescribed distance 
between it and a vehicle in front. May be able to come to a stop and 
continue. 

Automatic emergency 
steering 

Detects potential collision and automatically controls steering to avoid or 
lessen the severity of impact. 

Forward automatic 
emergency braking 

Detects potential collisions while traveling forward and automatically 
applies brakes to avoid or lessen the severity of impact. 

Lane keeping assistance 
Controls steering to maintain vehicle within driving lane. May prevent 
vehicle from departing lane or continually center vehicle. 

Dynamic driving assistance 
Controls vehicle acceleration, braking, and steering. SAE standard 
definition of Level 2 driving automation systems outlines this 
functionality. 

 

The current study estimated the future safety benefits of installing these technologies on 
automobiles, pickup trucks, minivans, vans, or sport utility vehicles (hereafter collectively 
“passenger vehicles”) and large trucks. Automation on other types of vehicles (e.g., 
motorcycles, off-road vehicles, micro-mobility devices) was not considered. Higher levels of 
automation were not considered due to lack of data on their safety performance. 
Technologies designed to assist with vehicle parking were not considered due to lack of data 
regarding the incidence of crashes involving parking as most such crashes likely occur on 
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private property (e.g., in parking lots) and thus are not included in most state and national 
motor vehicle crash databases. Safety technologies unrelated to vehicle automation (e.g., 
night vision systems, alcohol ignition interlocks, technology to improve vehicle 
crashworthiness) were not considered as they were outside the scope of the study. 
Additional details on specific model inclusion and exclusion criteria are further discussed 
subsequently in Methods subsection 3 and summarized in Table 2. 

Defining combinations of ADAS technologies on vehicles 

The research team developed a set of technology “packages” representing different 
combinations of ADAS and partial driving automation technologies expected to be available 
on vehicles in the United States during the study period. The packages were developed to 
detail technologies in vehicles at a more granular level than SAE level (SAE, 2021), while 
also recognizing that disentangling each individual ADAS technology was beyond the scope 
of the study. Therefore, the vehicle categories represented a compromise between 
delineating potential safety impacts of specific technologies and managing model 
complexity, recognizing that many of these technologies co-occur in the same vehicles. The 
vehicle technology packages examined in the current study were defined as follows: 

 Base Package: No ADAS or automation 
 Package A: Warning systems (blind spot warning, lane departure warning, forward 

collision warning, and pedestrian detection systems)  
 Package B: Adds adaptive cruise control to Package A 
 Package C: Adds automatic emergency braking, emergency steering assistance, 

and lane keeping assistance to Package B 
 Package D: Adds dynamic driving assistance (i.e., simultaneous operation of 

adaptive cruise control and lane centering assistance) to Package C  

Note that as defined here, each higher technology package includes all of the systems 
present in all lower packages. 

Step 2: Estimating crash avoidance probabilities for ADAS 

In this task, the research team first established decision rules regarding what general types 
of crashes could versus could not potentially be prevented by each ADAS technology. For 
crashes deemed potentially preventable, the research team then estimated the probability 
that the applicable technology would prevent the crash. These decision rules (preventable 
vs. not preventable, and probability of prevention among the preventable) were then 
mapped onto specific crash types, pre-crash maneuvers, and environmental factors recorded 
in national crash databases used to quantify the baseline incidence and estimate the likely 
future incidence of such crashes. 

Data on motor vehicle traffic fatalities examined in the current study were from NHTSA’s 
Fatality Analysis Reporting System (FARS) database, which is a census of all crashes that 
occur on public roads in the United States, involve a motor vehicle in transport, and result 
in a death within 30 days of the crash (NHTSA, 2022a). Data on nonfatal injuries and total 
crashes were from the NHTSA’s Crash Report Sampling System (CRSS) database, which 
comprises a geographically stratified sample of police-reported crashes, which are weighted 
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to produce statistical estimates regarding all police-reported crashes nationwide (NHTSA, 
2022b). Together, these data systems provided a holistic understanding of the 
characteristics, associated factors, and outcomes of crashes across the United States.  

Using these data sources, the research team extracted key crash-level (e.g., crash conditions 
such as road surface conditions, lighting, weather), vehicle-level (e.g., number of vehicles 
involved, types of vehicles involved, pre-crash maneuver of vehicles, crash geometry from 
the perspective of each vehicle), and person-level (e.g., severity of injuries) characteristics 
from respective 2017–2019 FARS and CRSS data files.  

Decision rules regarding whether each general type of crash identified in the crash 
databases could potentially be prevented by ADAS, and if so, the probability of successful 
prevention given the specifics of the crash, were informed by literature reviews and expert 
opinion. Further details on specific decision rules are included below. 

Identifying potentially preventable crashes 

To identify crashes that each ADAS technology had some possibility of preventing, the team 
examined variables in the FARS and CRSS data systems that described pre-crash 
maneuvers (variable name: p_crash2) and crash type/geometry (variable name: acc_type). 
The team then assessed whether each specific ADAS technology included in the study had 
any potential to prevent each general type of crash as defined by combination of pre-crash 
maneuver and crash type/geometry. Note that the purpose of this step was simply to 
distinguish between crashes that the ADAS considered in the current study had any 
possibility versus no possibility of preventing; the probability of prevention among those 
deemed possibly preventable is assessed in a subsequent step.  

Decisions regarding whether a given technology had any potential to prevent a particular 
type of crash were made independently by two members of the research team based on 
literature reviews and expert opinion. Disagreements were resolved through discussions 
with the larger research team. The following broad categories of crashes were deemed not 
preventable by ADAS and thus were not examined in further detail: (a) crashes resulting 
from vehicle malfunctions (e.g., tire blow out, stalled engine), (b) crashes involving pre-
crash loss of control/traction, (c) wrong-way crashes, (d) straight-crossing-path (“T-bone”) 
collisions, (e) turn-across-path collisions (AAA, 2022), (f) crashes occurring on non-
trafficways or ramps, (g) crashes involving vehicles entering or leaving driveways, and (h) 
crashes involving objects (e.g., debris) on the roadway.  

The following summarizes the research team’s determinations regarding the potential of 
each technology included in the study to prevent various general types of crashes. Appendix 
Table A1 shows the specific combinations of crash type and pre-crash maneuvers that the 
team determined ADAS had some possibility of preventing (and thus carried forward to the 
next step of the analysis) versus those deemed not preventable. 

Forward collision warning and automatic emergency braking systems were assumed to help 
prevent crashes in which another vehicle or entity ahead was stopped or rapidly 
decelerating just prior to the crash and in situations where the ultimate crash type was a 
forward impact, including but not limited to rear-end collisions (IIHS, 2022; Tan et.al; 
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2020). While the probability of successful prevention by FCW versus AEB differed (as 
discussed in next section), they were assumed to have some potential to prevent the same 
general types of crashes.  

Pedestrian detection systems were determined to be relevant in crashes that involved a 
pedestrian approaching or in the roadway, but not in all crash-type scenarios. For example, 
if a vehicle was turning, it was assumed the detection system would not have sufficient 
time to detect the pedestrian and avoid the collision, as such systems have been shown to 
perform poorly such scenarios (Cicchino, 2022; AAA, 2019). 

Lane departure warning and lane keeping assistance systems were assumed to have the 
potential to prevent crashes in which a vehicle traveled over its lane boundaries or 
departed the road prior to the occurrence of the crash. These include simple road-departure 
crashes (often resulting in vehicle rollovers or collisions with fixed objects) as well as other 
types of crashes immediately preceded by unintentional lane departure (e.g., a forward 
collision with another vehicle in an adjacent lane). These technologies, however, were 
assumed not to prevent crashes occurring due to vehicle turning movements, nor crashes 
resulting from evasive actions taken by the driver in attempt to avoid a collision with a 
vehicle or pedestrian on the roadway. 

Blind spot detection systems are designed to detect other vehicles immediately beside the 
vehicle and should assist in avoiding collisions related to side or lateral maneuvers (most 
commonly sideswipe collisions). Blind spot detection was assumed unable to contribute 
meaningfully to the prevention of other crash types such as forward impacts or 
unintentional lane departures.  

Automatic emergency steering was assumed to have some potential to prevent many road 
departure, forward impact, and rear-end collisions by helping the driver to steer or redirect 
the vehicle to avoid an imminent collision. However, similar to other technologies, it was 
assumed that the technology would not intervene during turning maneuvers. It was also 
assumed to have limited ability to intervene in sideswipe collisions.  

Adaptive cruise control is designed to help keep a vehicle at a safe following distance from 
the vehicle in front of it, this technology was assumed to help to prevent front-to-rear 
crashes in certain scenarios.  

Dynamic driving assistance is designed to keep a vehicle centered in its lane and maintain 
speed and following distance. It was assumed that the technology would be able to prevent 
many of the crashes involving road departures, forward impact, rear-end collisions with 
another vehicle, and sideswipe collisions. However, it was assumed that the technology 
would not be able to prevent crashes that involved turning movements based on research 
indicating limited efficacy for ADAS technologies in turning maneuvers (Yue et al., 2020).  

Estimating probability of avoidance for individual crashes  

For crashes determined to be potentially preventable in previous step based on their crash 
type and pre-crash maneuvers, the research team then estimated the probability that a 
given technology would avoid the crash. (Note that for simplicity, the approach only 
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considers crash avoidance. It does not consider whether ADAS technology packages may 
reduce injury severity in the event a crash is not prevented, for example by reducing impact 
speed.) The probability that a crash (i) would be avoided (Pi) was computed as the product 
of the following: 

i. The baseline effectiveness of the technology for a given crash type, expressed as a 
probability of crash avoidance (Ai) 

ii. A multiplier representing any reduction in effectiveness due to the particular 
hazards present in the crash (e.g., weather, lighting, etc.) (Hi) 

iii. The probability that the technology would be activated and in use at any given 
moment, given that the vehicle was equipped with the technology (Ui) 

The baseline effectiveness estimates, multipliers for reduction in effectiveness due to 
hazards present, and assumed probabilities of system activation/use are provided in Table 
A2 in Appendix A. Using the values from Table A2, the probability that a given technology 
package (j) in isolation would prevent a given crash i, given that the vehicle was equipped 
with the technology and that the technology was in use at the time, is thus: 

𝑃 , | 𝐸 ∩ 𝑈 𝛿 , 𝐴 , 𝐻   (1) 

where δi,j =1 if crash i is a type of crash deemed potentially preventable by any of the ADAS 
included in technology package j (crash type marked “Y” in Table A1 in Appendix A) and 0 
otherwise, and Ej is the probability that the relevant vehicle is equipped with technology 
package j. The probability that technology package j would avoid the crash given only that 
the vehicle is equipped with package j is thus:  

𝑃 , |𝐸 𝑃 , |𝐸 ∩ 𝑈 𝑈 𝛿 , 𝐴 , 𝐻 𝑈  (2) 

When more than one hazard potentially reducing system effectiveness was present (e.g., if a 
crash occurred during a rainstorm and in darkness), the largest reduction in effectiveness 
associated with any of the individual conditions was used. (The research team also 
considered treating each condition as acting independently and multiplying the 
corresponding hazard reductions, but determined this would be inappropriate, as 
oftentimes multiple conditions impair the performance of the technology through similar or 
overlapping mechanisms. For example, darkness and precipitation both restrict cameras’ 
vision.) 

Given the prevalence of lane departure crashes (approximately one third of nonfatal and 
one half of fatal crashes) and literature showing high percentage of drivers that deactivate 
lane departure and lane keeping assistance technologies (Reagan & McCartt, 2016), the 
research team disaggregated crashes according to whether they were lane-departure or 
non-lane-departure crashes and by whether the lane keeping systems (lane departure 
warning or lane keeping assistance) included within any given technology package were 
assumed to be in use. The probability shown above in Equation 2 was thus decomposed into 
a weighted average of the probability of prevention given the lane keeping features of the 
system were active (denoted below in Equation 3 by subscript j+) and the probability of 
prevention given the lane-keeping features were inactive (denoted by subscript j–), 
calculated using the applicable values in Table A2 (i.e., for lane-departure or non-lane-
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departure crashes, with lane keeping features active or inactive) for system effectiveness, 
probability of use, and reduction in effectiveness due to hazards present, and weighted by 
the probabilities of system use with the lane keeping features active versus inactive as 
shown below in Equation 3. 

𝑃 , |𝐸
–

𝑃 , |𝐸 ∩ 𝑈 𝑈 𝑃 ,–|𝐸 – ∩ 𝑈 – 𝑈 –   (3) 

Note that because each higher ADAS package as defined in the current study includes all 
lower packages, the probability that each technology would be in use at any given time was 
determined using a “step-down” approach. For example, Package D comprises all 
technologies considered in the current study up to and including dynamic driving 
assistance. If a vehicle was equipped with ADAS Package D, there is some probability (per 
Table A2) that dynamic driving assistance would be in use. However, when not in use, any 
of the technologies included in Package C could be in use, and their associated effectiveness 
and usage parameters would then apply. Thus, the probability that a vehicle equipped with 
Package A would avoid a crash is simply given by Equation 2, the probability that a vehicle 
equipped with Package B would avoid it is given by the sum of the probabilities that 
Package B would avoid the crash plus the probability that Package B systems were not in 
use and that Package A would avoid the crash, as shown below in Equation 4. 

𝑃 |𝐸 𝑃 , |𝐸 𝑃 , |𝐸 𝑈 𝑃 , |𝐸 𝑃 |𝐸 1  𝑈   (4) 

Similarly, Equations 5 and 6 show corresponding probabilities of crash avoidance for 
vehicles equipped with packages C and D, respectively. 

𝑃 |𝐸 𝑃 , |𝐸 𝑃 |𝐸 1  𝑈   (5) 

𝑃 |𝐸 𝑃 , |𝐸 𝑃 |𝐸 1  𝑈   (6) 

For each parameter referenced in the equations above, Table A2 provides an initial value 
(i.e., the value for the base year, 2017) and a final value, representing the team’s 
assumptions of how effective the technology is likely to be by 2050, given improvement and 
maturation in the technology. Improvements/maturation over time between the starting 
year and ending year were modelled using an S-shaped curve, with values in intermediate 
years determined by simulation as described in the next section. Documentation in 
Appendix A summarizes the team’s rationale for each value. Given the scope of the types of 
technologies considered, various manufacturer-specific implementations of them, as well as 
the range of crash scenarios and unique circumstances present, exact technology 
effectiveness values for specific crash types were often unavailable in existing literature, 
thus the values used reflect the research team’s best judgment informed by existing 
literature where applicable as well as by expert opinion. Various sensitivity analyses 
described in the Uncertainty and Sensitivity Analyses section below were conducted to take 
into account the uncertainty around these parameter estimates. 
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Step 3: Modelling dynamics affecting diffusion of ADAS 

The purpose of this step was to conceptualize the broader system dynamics affecting the 
adoption, diffusion, and safety performance of ADAS technology. To do this, the team used 
a system dynamics (SD) modeling approach to examine and account for the underlying 
complexity affecting ADAS diffusion trends. SD is an approach used to analyze complex and 
dynamic systems. SD is particularly useful when there is a web of factors interacting and 
changing over time such that cause-and-effect relationships are particularly difficult to 
intuit or trace through several steps. SD helps to model complexity exhibited by non-linear 
trends (which are common in transportation safety outcomes); feedback behavior (i.e., 
closed chains of endogenous factors; see more on this below); delays between causes and 
effects (i.e., how quickly an action causes a reaction); and adaptiveness (Sterman, 2000). SD 
simulation models have been used to study ADAS and AV system deployment, electric 
vehicle infrastructure diffusion and readiness, and other specific road safety outcomes and 
vehicle technology uptake trends over time (Harrison et al., 2021; Keith et al., 2019; 
Nieuwenhuijsen et al., 2018; Puylaert et al., 2018; Rakoff et al., 2020; Stanford, 2015; 
Struben & Sterman, 2008).  

At the core of an SD approach is a mapping method called causal loop diagramming 
(Sterman, 2000). Causal loop diagramming depicts key variables believed to be most 
important for understanding specific outcomes over time, and the hypothesized causal 
relationships between them. Causal loop diagrams (CLDs) are generally created using the 
best available literature and data, as well expert input to supplement literature where gaps 
are encountered. These CLDs ultimately depict the theoretical underpinning and core 
causal structure that then shapes the development of simulation models. They also serve as 
living maps that can be updated over time as new research improves the collective 
understanding of the system and as stakeholders discuss and debate modifications to 
assumptions, additions to the model, or scenarios to examine. 

In the current study, the research team created a CLD to guide this work and inform 
simulation model development (Figure 2). This CLD depicts the research team’s best 
understanding of the most important and/or basic dynamics to consider when modeling 
ADAS diffusion within the overall project scoping decisions described previously. The 
development of this CLD was informed by literature reviews, discussions among the project 
staff, discussions with external experts, and reviews of previous ADAS- and AV-related SD 
models. In particular, the previous work of Nieuwenhuijsen et al. (2018), with 
advancements by Harrison et al. (2021), provided the foundation for the CLD used in the 
current study. Those studies used SD simulation models to examine ADAS and AV 
diffusion into the vehicle fleet in the Netherlands under a variety of scenarios. Several 
feedback loops in the top third of Figure 2, related to technology maturity, industry 
experience, purchase price, sales, and attractiveness, were derived from those models. 
While the quantitative estimates attached to these dynamics differ between the United 
States versus European settings, it is expected that some of the underlying structure 
related to vehicle technology diffusion is similar. 
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Figure 2. Causal loop diagram of important interconnected mechanisms likely to impact 
ADAS diffusion and related safety trends. 

The CLD shown in Figure 2 includes key variables, causal relationships, and feedback 
processes hypothesized to be most important to understanding ADAS diffusion and related 
safety outcomes in the context of the current study. Factors in the diagram are connected 
via causal arrows with polarity. Casual arrows with a positive polarity (+) indicate that a 
change in the variable from which the arrow originates causes a change in the same 
direction in the destination variable (i.e., if the first variable increases, then the second also 
increases), assuming all else is equal. Causal arrows with a negative polarity (−) indicate 
that the two connected variables change in opposite directions. When causal connections 
form a closed chain of effects, over time, they create a balancing or reinforcing loop, 
depending on the combined polarities of the arrows in that loop. In transportation models, 
there are several key dynamics operating over time, including some that are balancing and 
others that are reinforcing. Simulation models help researchers to understand and test 
potential dynamics to learn what might be contributing to safety-related trends over time.  

Balancing loops are critical dynamics in the system that tend to resist change and seek 
equilibrium. One example of a balancing loop is related to ADAS technology development 
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and maturity (e.g., Loop “B1” in Figure 2). This balancing loop theorizes that as there is 
more research and development in a specific ADAS technology, the technology matures, and 
production efficiency increases. This has the effect of reducing the purchase price for that 
technology over time, which eventually reduces the funds and investments for further 
development of that specific technology. As technology peaks, iteration becomes less 
profitable, and investment in further development of that specific technology decreases in 
favor of investment in research and development of other new technologies (c.f., Sterman, 
2000). This hypothesized feedback loop is a balancing feedback loop because increases in 
the initial variable (here, technology maturity) eventually cycle through a chain of 
connected factors over time to decrease (or slow) the rate of change in that initial variable, 
all else held equal.  

Reinforcing loops are critical to understanding the behavior of a complex system. In 
contrast to balancing loops, reinforcing loops generate exponential growth (or decline/decay) 
in the system. This system includes several potential reinforcing loops (see loops labeled 
with an “R” in Figure 2). For example, a “word of mouth” reinforcing loop is found in many 
complex health and safety systems (see Loop “R3” in Figure 2). In the context of the current 
study, this loop posits that as sales of vehicles with certain ADAS features increase, the 
general public’s familiarity with this type of technology increases (e.g., people become 
increasingly likely to know others who have the technology or have experienced it). This 
increases the attractiveness of and willingness to adopt the technology, causing sales of 
vehicles with those specific technology features to continue to increase, all else held equal. 
This type of loop causes quick growth in uptake (when observed in isolation).  

To further facilitate simulation model development and explicitly document decisions 
pertaining to the model boundary and scope related to ADAS diffusion and safety, Table 2 
lists factors included in the current study as well as factors acknowledged as potentially 
important but declared outside the scope of the current study. Within the list of included 
variables, the research team further divided these variables into variables assumed to be 
influenced or determined by other variables included in the model (i.e., endogenous 
variables) and variables that are inputs to the model but are modeled as unaffected by 
changes within the model (i.e., exogenous variables). Future research needs and model 
extensions beyond the scope of the current study are discussed in the Discussion section. 
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Table 2. Inclusion and exclusion decisions to further define model boundary and scope. 

Included Endogenous Factors Included Exogenous Factors Not Included in Current Study 

Sales, price, uptake, fleet size, 
trips of vehicles equipped with 
ADAS (and non-ADAS-equipped 
vehicles) 

Information (media, safety 
ratings, recalls, etc.) affecting 
perceptions related to ADAS 
safety 

SAE Level 3–5 systems (due to 
lack of real-world safety 
performance data and time 
horizon of study) 

Technology maturity, research 
and development, industry 
experience related to ADAS 
development  

Risk-taking behaviors (and/or 
cognitive overload) related to 
ADAS technology (e.g., sleeping 
at the wheel) and use of 
systems (e.g., turning off 
systems) 

Crashes solely involving buses, 
motorcycles, or other/unknown 
vehicles (due to lack of data on 
ADAS effectiveness in these 
vehicle types) 

Perceived and actual capability 
and safety of ADAS technology 

 
Crashes occurring off public 
roads (e.g., parking lots and 
other private property) due to 
lack of data on incidence 

Crashes involving vehicles 
equipped with ADAS (and 
without ADAS) and crashes 
avoided by these vehicles 

 

Potential supply chain 
disruptions and availability of 
materials/labor for ADAS 
technology and vehicle 
production 

Number and types of injuries 
occurring in crashes involving 
ADAS-equipped vehicles (and 
non-equipped vehicles) 

 

Exogenous factors affecting 
consumer vehicle purchasing 
decisions (e.g., economic 
shocks, developments related to 
electric vehicle technology and 
policy, etc.) 

  Vehicle cybersecurity risks 

 

As shown in Table 2, the model included core dynamics related to vehicle technology 
development, sales, fleet size, and consumer decisions to purchase vehicles with different 
ADAS technologies and features. These purchase decisions were modeled as driven by a 
variety of factors, including price, familiarity with the technology, perceived safety, and 
perceived capability of the vehicle. Price was modeled as affected by technology maturity 
and cumulative industry experience for manufacturing a given technology. Familiarity was 
modeled as driven by sales and the likelihood of knowing others who used the technology, 
hearing about it, or seeing it often in the media. Crashes occurring or avoided were modeled 
as influenced by the number of trips occurring, as well as the vehicle’s crash avoidance 
capability as influenced by the technology with which it was equipped, its baseline 
effectiveness, technological maturity, as well as the actions of the vehicle operator (e.g., 
response/non-response to alerts from warning systems, turning off/deactivating safety 
technology). Together, these dynamics interacted to generate model simulated crash trends 
over time. 

Using the CLD and explicit model boundary decisions, the research team converted the 
theoretical model into an SD simulation model using Any Logic software (AnyLogic, 2022; 
Sterman, 2000). As mentioned, CLDs can serve as a theoretical underpinning and high-
level view of an SD model, which can then be quantitatively defined and simulated, linking 
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the defined elements in the system. The research team used literature reviews to 
parameterize and inform the model assumptions. For example, starting values for the 
approximate number of vehicles with each technology package at model initiation (i.e., in 
2017) were estimated by triangulating data from Consumer Reports (CR, 2021), Highway 
Data Loss Institute (HDLI, 2019, 2020), and automotive research companies (Hedges & Co, 
2022). Similarly, estimates of the current average vehicle lifespan and vehicle miles 
traveled growth rates in the United States were obtained from S&P mobility data and 
Federal Highway Administration (FHWA) forecasts, respectively (S&P Global Mobility, 
2022; FHWA, 2022a). Additionally, several estimates and assumptions regarding the speed 
of technological maturity (i.e., measure of technology reliability and performance modeled 
on a scale of 0%–100% with 100% representing perfect performance and reliability) and 
knowledge growth (i.e., measure of research and development output that is then used to 
drive technological maturity) were assumed to be roughly similar to prior modeling efforts 
in this space (Harrison et al., 2021; Nieuwenhuijsen et al., 2018). Sensitivity analyses 
(described subsequently) examined alternative scenarios where the uptake and use were 
both higher and lower than the value predicted by the SD simulation model.  

Step 4: Estimating future numbers of crashes, injuries, and deaths potentially 
avoided by ADAS 

In this step, the research team brought together the results of the previously described 
steps 1–3 to estimate the total number of crashes, injuries, and deaths potentially avoided 
by ADAS technologies each year through 2050. To do this, the research team built a model 
structure to simulate the number and characteristics of crashes, injuries, and deaths 
occurring in future years, and then estimated the probability that each simulated crash 
would be prevented by ADAS. 

Predicting future crashes, injuries, and deaths before accounting for avoidance by 
ADAS 

Future crashes were simulated using data from fatal crashes in NHTSA’s FARS data 
system and nonfatal crashes from NHTSA’s CRSS. Because CRSS is a sample of all police-
reported crashes each year in the United States, statistical weights in CRSS were used to 
determine the number of crashes in the full population represented by each crash in the 
database. Fatal crashes in FARS were assigned a statistical weight of 1 because FARS 
includes a record of every fatal crash; fatal crashes in CRSS were excluded to avoid double-
counting. All crashes that involved at least one passenger vehicle or large truck that was on 
a trafficway at the time of the critical event that led to the occurrence of the crash were 
included, with the exception that crashes involving more than 4 vehicles (<1% of all 
crashes) were excluded due to the difficulty in determining the roles of the many vehicles 
involved and thus the ability of technology on any particular vehicle to prevent the crash.  

For simplicity, the model assumed that before accounting for crashes potentially prevented 
by ADAS, the future rate of crashes per mile driven would be similar to the rate in the base 
year. Thus, the number of crashes in each future year would be expected to be similar to the 
number in the base year plus any change proportional to the change in total amount of 
driving. The model assumed a 1% annual increase in total vehicle miles driven, similar to 



15 

 

the FHWA’s forecast that vehicle miles of travel will increase by an annual average of 0.9% 
in years 2018–2048 (FHWA, 2020). Thus, the expected number of crashes in each future 
year was modeled as the average number in the base year plus the 1% annual increase due 
to increased driving mileage.  

To account for random variability in the crashes that occur as well as to represent the full 
range of potential crash characteristics as well as possible, the current study used an 
aggregate of FARS and CRSS data from 2017–2019 as the base year. The numbers of 
crashes, nonfatal injuries, and deaths in the base year are shown in Table 3. The number of 
crashes expected to occur in each future year was thus the average number in 2017–2019 
plus a 1% annual increase.  

Table 3. Number of crashes, nonfatal injuries, and deaths in base year used for simulations. 
 

Crashes Nonfatal Injuries Deaths 

2017 6,205,000 2,641,000 33,727 
2018 6,492,000 2,609,000 33,131 
2019 6,533,000 2,629,000 32,603 
Total 19,230,000 7,879,000 99,461 

Base Year 6,410,000 2,626,000 33,154 
Base year for study = annual average numbers of crashes, injuries, and deaths in years 2017–2019. Data are from 
NHTSA’s FARS and CRSS databases and include all crashes involving ≥1 passenger vehicle or large truck on a 
trafficway prior to critical event and ≤4 vehicles total. Statistics shown are weighted estimates from records of 
146,559 nonfatal crashes and 91,236 fatal crashes. 

The characteristics of crashes in each future year were predicted by sampling with 
replacement the corresponding number of crashes (i.e., the average in the base year plus 
1% annual increase) from among the entire pool of crash records from 2017–2019. Sampling 
was performed separately for each month to account for seasonal variation in the number, 
severity, characteristics, and environmental conditions of crashes (e.g., crashes in each 
future January were simulated by sampling from among all crashes that occurred in 
January 2017, January 2018, and January 2019.) 

Predicting the probability that ADAS would avoid each simulated future crash 

The probability that each future crash, simulated as described above, would be avoided by 
ADAS was estimated as a function of the probability that the vehicles involved in the crash 
would be equipped with any given ADAS package, the probability that the ADAS package 
would be able to avoid the crash given details about the crash, and the probability that the 
relevant ADAS feature would be in use at the time (i.e., not turned off or deactivated). 

For each vehicle involved in a simulated crash, its probability of being equipped with a 
given ADAS package was estimated based on the year of the crash and the proportion of all 
vehicles predicted to be equipped with each ADAS package in that year (predicted as 
described in the Step 3). For each simulated crash, the model first assessed whether there 
was any possibility that the ADAS technologies on any of the involved vehicles could have 
avoided the crash, and if so, its probability of successful avoidance, as described previously 
in Step 2. The probability that a given vehicle would avoid a given future crash was thus 
computed as sum of the probabilities that a vehicle equipped with each respective 
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technology package would avoid the crash (from equations 2, 4, 5, and 6) weighted by the 
probability that the vehicle was equipped with each respective technology package, as 
shown in Equation 7, below. 

𝑃 ∑ 𝑃 |𝐸 𝐸, , ,   (7) 

If a crash involved only one vehicle, the probability of avoiding the crash was based on that 
vehicle’s predicted probability of avoiding it. In crashes involving two vehicles, the crash 
was assumed to be prevented altogether if either of the vehicles was predicted to avoid it. In 
crashes involving three or four vehicles, the model assumed that each vehicle predicted to 
avoid the crash has a 50% probability of preventing the entire crash from occurring. (Note 
that fewer than 10% of all crashes involve more than two vehicles, and sensitivity analyses 
indicated that changes to assumptions regarding the prevention of crashes involving more 
than two vehicles had negligible impact on the overall results.) 

Finally, the prevention of each crash was assumed to prevent all of the deaths and nonfatal 
injuries that occurred in the original crash sampled from the FARS and CRSS base year 
data. For simplicity, the study did not attempt to estimate any potential additional 
reduction in injuries due to reductions in the severity of crashes still predicted to occur (e.g., 
due to reduced impact speed). 

In summary, the model estimated the probability that each simulated future crash, and 
thus any deaths or injuries occurring in the crash, would be prevented by ADAS features on 
the vehicles involved in the crash. The probabilities of prevention for each individual crash 
were then aggregated over all crashes to estimate the total numbers of crashes, injuries, 
and deaths prevented by ADAS in each future year, as well as the number that would still 
occur. For example, if the model ultimately determined that a crash had a 30% probability 
of being avoided by ADAS, this indicates for every 100 such crashes that would otherwise 
occur without considering ADAS, 30 would be avoided by ADAS and 70 would still occur.  

Model verification and analyses 

The last step in the model building process consisted of performing verification and 
validation checks consistent with model building best practice. The research team assessed 
unit and dimension consistency, completed code verification, and conducted extreme value 
testing.  

The model was then used to conduct substantive analyses that were the focus of the current 
study. Specifically, the research team used the model to forecast the number of crashes, 
injuries, and deaths that ADAS will help to prevent, and the number that will still occur, 
annually and cumulatively through 2050. Results compare the numbers crashes, injuries, 
and deaths expected to be avoided in future years given anticipated ADAS technology 
advancement, diffusion, and use, relative to the numbers that would be expected if levels of 
ADAS effectiveness, diffusion into the vehicle fleet, and use remain at their base year 
levels. 

Results are presented in terms of three scenarios:  a “best estimate,” a “low uptake & use” 
scenario, and “high uptake & use” scenario. The “best estimate” represents the safety 
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outcomes obtained through simulation with model parameters set to values that the 
research team regards as the most probable based on available data, literature, and expert 
opinion. The “high uptake & use” and “low uptake & use” scenarios represent more 
optimistic and more pessimistic scenarios, respectively, simulated by modifying the 
following key parameters (shown in the CLD, Figure 2) affecting technology uptake and 
utilization: 

 Attractiveness weight represents how important non-price attributes of the vehicle 
are, including comfort, familiarity, and safety. Increasing this parameter increases 
all of these attributes, including safety, which in turn increases ADAS sales. 

 Industry learning effectiveness represents how effectively or quickly industry 
spending on each technology package gets transferred into technology maturity and 
can bring down ADAS costs to the consumer. Increasing this would also then 
directly increase ADAS sales. 

 Learning speed represents how quickly perceived safety catches up to actual safety. 
A value of 1 represents a scenario where public perceptions of the safety of the 
technology perfectly track its actual safety, 0 represents a scenario where public 
perceptions of safety do not change even as actual safety does. Increasing learning 
speed increases safety benefits. 

 Initial perceived safety relative to actual safety represents how accurate the initial 
driver perception of technology safety is. A value of 1 represents a scenario in which 
initial public perceptions of the safety of the technology agree perfectly with its 
actual safety; a value of 0 represents a scenario in which the public perceives the 
technology as being much less safe than it actually is. [Note: While the current 
model does not allow perceived safety to exceed actual safety, sensitivity analyses 
revealed little influence of this parameter on overall model inferences.] 

 Technology usage modifier represents the likelihood of having ADAS technology 
turned on and in use (i.e., as opposed to having been deactivated by the driver, or 
the driver ignoring warnings), which affects ADAS safety benefits or lack thereof. 
Values shown in Table A2 in Appendix A are multiplied by this value. 

The values of these parameters that were used to define the “best estimate,” “high uptake & 
use,” and “low uptake & use” scenarios and produce the results presented in this report are 
provided in Appendix B. 

Uncertainty and sensitivity analyses 

In addition to these analyses, the research team performed uncertainty and sensitivity 
analyses. Uncertainty analysis was used to estimate the outcomes of interest in the face of 
stochasticity and parameter uncertainty in the model, while sensitivity analysis was used 
to identify the uncertain parameters with the largest influence on model estimates. 

In uncertainty analysis, the research team was concerned with two types of uncertainty in 
the model: (a) stochasticity and (b) parameter uncertainty. Stochasticity refers to the 
underlying randomness in the simulation model estimates of the probability of avoidance of 
crashes. Parameter uncertainty refers to the inherent uncertainty in the values of the 
model parameters used to define the model and simulate outcomes. To carry out 
uncertainty analysis, each scenario was simulated 500 times, sampling values for the model 
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parameters from a normal distribution centered on the best estimate and with a standard 
deviation of 25% of the starting value. This normal distribution was truncated to the range 
of plausible values for a given parameter (e.g., a probability could only vary between 0 and 
1). All model runs for a given scenario were aggregated together, and for each year, the 50th 
percentile value was taken as the main estimate and the 2.5th and 97.5th percentiles were 
taken as the endpoints of the 95% UI, which represents the extent of variation in the 
relevant outcome measure (e.g., number of crashes prevented by ADAS in a year) due to 
stochasticity and parameter uncertainty. 

Finally, the team conducted a sensitivity analysis in which uncertain model parameters 
were varied, one at a time, in increments of 10%, 20%, 30%, 40%, and 50%, with each model 
run simulated 100 times to account for stochastic variation. When any one parameter was 
changed, all other parameters were kept at their original “best estimate” values.  Values 
were truncated at plausible parameter boundaries (e.g., a probability could only vary 
between 0 and 1). These parameters were then rank ordered based on the magnitude of 
their impact on fatal and nonfatal injuries avoided in 2050. 

Results 

To estimate the likely future safety benefits of ADAS, the SD model developed by the 
research team was first used to estimate the percentage of all vehicles on U.S. roads that 
would be equipped with various configurations of ADAS technologies over the 30-year time 
horizon examined. Figure 3 presents the share of the U.S. vehicle fleet expected to be 
equipped with each distinct combination or package of ADAS technologies considered under 
each of the technology diffusion scenarios modelled (best estimate, low tech uptake & use, 
high tech uptake & use). 
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Figure 3. Expected proportion of total U.S. vehicle fleet represented by each of five different 
technology packages under three different technology diffusion scenarios, 2020–2050. 

 
Note: Shaded ribbons show 95% UIs for estimates based on 1,000 model simulation runs. 
Base: No ADAS.  
A: Warning systems (blind spot, lane departure, forward collision, pedestrian detection).  
B: A + adaptive cruise control systems.  
C: B + automated safety systems (automatic emergency braking, emergency steering assistance, lane keeping 
assistance).  
D: C + dynamic driving assistance. 

In the best estimate scenario, vehicles equipped with a full suite of ADAS technology 
including dynamic driving assistance or SAE Level 2 partial automation (Package D) are 
expected to account for approximately 54% of the entire U.S. vehicle fleet (95% UI: 28%, 
70%) by 2050. In the high uptake & use scenario, approximately 69% (95% UI: 40%, 79%) of 
vehicles would be equipped with Package D by 2050. In the low uptake & use scenario, 30% 
(95% UI: 13%, 46%) would be expected to be equipped with this level of automation. Note 
that in even the low uptake & use scenario, more than 95% of all vehicles on U.S. roads are 
expected to be equipped with at least some ADAS (i.e., Package A or higher) by 2050. 

Figure 4 presents the expected numbers of crashes, injuries, and deaths prevented by 
ADAS technologies each year through 2050 under the technology diffusion scenarios 
presented in Figure 3. As in Figure 3, three sets of estimates are shown: a best estimate 
based on assumptions deemed most probable, low uptake & use, and high uptake & use 
scenarios. Figure 5 shows summary estimates for the same scenarios for three individuals 
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representing the short-term (2030), mid-term (2040) and long-term (2050) safety impact of 
ADAS. 

Figure 4. Expected percent of fatalities, nonfatal injuries, and crashes prevented annually by 
ADAS technologies under each of three technology uptake and use scenarios, United States, 
2020–2050. 

 

Note: ADAS technologies considered were warning systems, adaptive cruise control, collision intervention systems, 
and dynamic driving assistance. Annual estimates of crash prevention are based estimated fleet share for various 
technologies shown in Figure 3.   
Base for percentages: Number of crashes, injuries, deaths expected to occur in each future year given levels of 
ADAS market penetration, effectiveness, and use in 2017–2019. (Crashes not involving a car or truck, involving 4 or 
more vehicles, or occurring off public roads were excluded.) 

In the best estimate scenario, results indicate that 16% (95% UI: 13%, 20%) of fatalities, 
representing nearly 6,000 fatalities, could be potentially avoided by ADAS in 2030, with 
estimates increasing to 34% (95% UI: 29%, 37%) in 2050. Proportions of nonfatal injuries 
and total crashes prevented by ADAS technologies were somewhat lower than fatalities, 
reflecting the varying severity of the types of crashes on which ADAS technology has the 
potential to intervene. Finally, variation in ADAS uptake and technology use could 
contribute to important outcome differences in the future. For example, differences in low 
versus high uptake & use scenarios could lead to an approximately 11 to 15 percentage 
point difference in the proportions of crashes, injuries, and deaths prevented in 2050.  
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Figure 5. Expected percent of fatalities, nonfatal injuries, and crashes prevented annually by 
ADAS technologies under each of three technology uptake and use scenarios in the United 
States in 2030, 2040, and 2050. 

 

Note: ADAS technologies considered were warning systems, adaptive cruise control, collision intervention systems, 
and dynamic driving assistance. Annual estimates of crash prevention are based estimated fleet share for various 
technologies shown in Figure 3.   
Base for percentages: Number of crashes, injuries, deaths expected to occur in each future year given levels of 
ADAS market penetration, effectiveness, and use in 2017–2019. (Crashes not involving a car or truck, involving 4 or 
more vehicles, or occurring off public roads were excluded.) 

Tables 4 through 6 provide the corresponding estimates and uncertainty intervals for 
Figure 5, in terms of annual and cumulative counts of fatalities, injuries, and crashes 
expected to be avoided by ADAS technologies and those still expected to occur in 2030, 
2040, and 2050 in each of the three technology uptake and use scenarios. Findings indicate 
that despite substantial numbers of crashes, injuries, and deaths prevented by ADAS, large 
numbers of crashes, injuries, and deaths will nonetheless remain, even as far into the 
future as 2050.  

In the best estimate scenario, ADAS is estimated to prevent approximately 16,500 traffic 
fatalities in 2050 (Table 4). However, the model indicates that an estimated additional 
27,400 fatalities would still be expected to occur. Similarly, under the best estimate 
scenario, the model predicts that ADAS will help vehicles to avoid 832,000 injuries (Table 5) 
and 2,179,000 crashes (Table 6) in 2050, yet 2,629,000 injuries and 6,493,000 crashes are 
still expected to occur despite those crash reductions due to ADAS.  
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Cumulative numbers of crashes, injuries, and deaths anticipated to occur in the 30-year 
period from 2021 through 2050 after accounting for the benefits of ADAS are also notable. 
Under the best estimate scenario in which various ADAS technologies enter the vehicle 
fleet at the rates shown previously in Figure 3, ADAS technologies collectively are expected 
to prevent approximately 37 million crashes, 14 million nonfatal injuries, and 249,000 
deaths cumulatively between 2021 and 2050, representing approximately 16% of crashes 
and injuries, and 22% of fatalities that would be expected to occur without ADAS. However, 
despite these savings, an estimated 189 million crashes are still expected to occur, resulting 
in an estimated 76 million nonfatal injuries and 896,000 deaths. The cumulative estimates 
also highlight the substantial importance of the rates of uptake and use of ADAS 
technology in determining how rapidly their safety benefits will accrue. The numbers of 
crashes, injuries, and deaths expected to be prevented by ADAS cumulatively through 2050 
are nearly twice as large in the high uptake & use scenario compared with the low uptake 
& use scenario. 
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Table 4. Percent and count of fatalities avoided by ADAS technologies and anticipated to occur under each of three technology uptake and use 
scenarios over time through 2050. 

 Annual Fatalities Cumulative Fatalities * 

(values in thousands) % Avoided (95% UI) 
Number avoided 

(95% UI) 
Number anticipated 

(95% UI) Number avoided (95% UI) 
Number anticipated  

(95% UI) 

2030       

Best estimate 16.3% (13.3%, 19.6%) 5.8 (4.8, 7.2) 30.1 (28.4, 31.9) 30.3 (24.4, 35.4) 314.3 (308.2, 320.6) 

High uptake and use 20.7% (15.9%, 25.4%) 7.5 (5.7, 9.3) 28.6 (26.6, 30.7) 38.9 (30.6, 47.0) 306.0 (297.0, 315.1) 

Low uptake and use 8.7% (6.2%, 10.6%) 3.1 (2.2, 3.8) 32.8 (31.5, 34.3) 15.5 (11.2, 18.0) 329.6 (324.9, 334.8) 

2040      

Best estimate 27.7% (23.7%, 32.2%) 11.0 (9.4, 12.9) 28.7 (26.6, 30.6) 118.4 (100.5, 139.3) 606.5 (585.9, 624.8) 

High uptake and use 33.1% (26.7%, 37.0%) 13.1 (10.6, 14.7) 26.6 (24.7, 29.3) 147.1 (117.1, 172.6) 578.9 (552.2, 606.3) 

Low uptake and use 17.1% (14.3%, 19.4%) 6.8 (5.6, 7.8) 33.0 (31.6, 34.6) 67.5 (53.8, 76.6) 658.2 (648.0, 671.8) 

2050      

Best estimate 33.5% (29.0%, 37.0%) 14.7 (12.7, 16.4) 29.2 (27.3, 31.5) 249.4 (214.8, 285.2) 896.0 (858.4, 932.1) 

High uptake and use 37.6% (32.5%, 40.2%) 16.5 (14.6, 17.8) 27.4 (25.9, 29.9) 298.3 (244.7, 334.4) 847.8 (811.6, 899.3) 

Low uptake and use 22.4% (19.8%, 25.3%) 9.8 (8.7, 11.2) 34.1 (32.2, 35.9) 152.1 (129.6, 171.8) 994.1 (973.6, 1,016.3) 
Note: ADAS technologies considered were warning systems, adaptive cruise control, collision intervention systems, and dynamic driving assistance. Annual estimates of crash 
prevention are based estimated fleet share for various technologies shown in Figure 3.   
Base for percentages: Number of fatalities expected to occur in each year shown given levels of ADAS market penetration, effectiveness, and use in 2017–2019. (Crashes not 
involving a car or light truck, involving 4 or more vehicles, or occurring off public roads were excluded.) 
*Cumulative fatalities represent the number avoided and number anticipated to occur cumulatively in 2021 through the year shown. 
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Table 5. Percent and count of nonfatal injuries avoided by ADAS technologies and anticipated to occur under each of three technology uptake 
and use scenarios over time through 2050. 

 Annual Nonfatal Injuries Cumulative Nonfatal Injuries * 

(values in thousands) % Avoided (95% UI) 
Number avoided 

(95% UI) 
Number anticipated 

(95% UI) 
Number avoided  

(95% UI) 
Number anticipated  

(95% UI) 

2030       

Best estimate 11.7% (9.7%, 13.8%) 331 (277, 393) 2,505 (2,441, 2,559) 1,722 (1,393, 1,999) 25,415 (25,133, 25,740) 

High uptake and use 14.8% (11.7%, 18.0%) 420 (331, 510) 2,412 (2,325, 2,502) 2,199 (1,747, 2,616) 24,933 (24,503, 25,387) 

Low uptake and use 6.4% (4.7%, 7.3%) 181 (134, 208) 2,656 (2,625, 2,700) 892 (662, 1,031) 26,247 (26,102, 26,469) 

2040      
Best estimate 19.8% (17.0%, 23.0%) 621 (533, 721) 2,513 (2,409, 2,598) 6,703 (5,715, 7,820) 50,416 (49,264, 51,388) 

High uptake and use 23.6% (19.2%, 26.3%) 739 (602, 825) 2,393 (2,307, 2,529) 8,296 (6,720, 9,690) 48,807 (47,434, 50,352) 

Low uptake and use 12.3% (10.5%, 13.9%) 385 (330, 437) 2,749 (2,698, 2,804) 3,862 (3,081, 4,347) 53,246 (52,761, 53,993) 

2050 

Best estimate 24.0% (21.1%, 26.3%) 832 (731, 909) 2,629 (2,546, 2,731) 14,138 (12,242, 16,090) 76,093 (74,089, 77,997) 

High uptake and use 27.0% (23.3%, 28.3%) 933 (807, 978) 2,528 (2,480, 2,648) 16,814 (13,941, 18,816) 73,399 (71,401, 76,258) 

Low uptake and use 16.1% (14.4%, 18.0%) 557 (497, 625) 2,904 (2,838, 2,964) 8,673 (7,350, 9,778) 81,550 (80,465, 82,792) 
Note: ADAS technologies considered were warning systems, adaptive cruise control, collision intervention systems, and dynamic driving assistance. Annual estimates of crash 
prevention are based estimated fleet share for various technologies shown in Figure 3.   
Base for percentages: Number of injuries expected to occur in each year shown given levels of ADAS market penetration, effectiveness, and use in 2017–2019. (Crashes not 
involving a car or light truck, involving 4 or more vehicles, or occurring off public roads were excluded.) 
*Cumulative injuries represent the number avoided and number anticipated to occur cumulatively in 2021 through the year shown. 

  



25 

 

 

 

Table 6. Percent and count of crashes avoided by ADAS technologies and anticipated to occur under each of three technology uptake and use 
scenarios over time through 2050. 

 Annual Crashes Cumulative Crashes * 

(values in thousands) % Avoided (95% UI) 
Number avoided 

(95% UI) 
Number anticipated 

(95% UI) 
Number avoided  

(95% UI) 
Number anticipated  

(95% UI) 

2030       

Best estimate 12.2% (10.2%, 14.5%) 868 (724, 1,033) 6,240 (6,071, 6,380) 4,507 (3,646, 5,236) 63,481 (62,746, 64,314) 

High uptake and use 15.5% (12.3%, 18.8%) 1,102 (874, 1,334) 6,005 (5,773, 6,229) 5,761 (4,581, 6,852) 62,226 (61,129, 63,399) 

Low uptake and use 6.7% (5.0%, 7.7%) 476 (355, 544) 6,631 (6,562, 6,750) 2,331 (1,736, 2,701) 65,656 (65,274, 66,247) 

2040      
Best estimate 20.7% (17.8%, 24.0%) 1,625 (1,400, 1,886) 6,226 (5,956, 6,446) 17,552 (14,938, 20,531) 125,530 (122,555, 128,153) 

High uptake and use 24.6% (20.1%, 27.5%) 1,933 (1,578, 2,162) 5,918 (5,688, 6,273) 21,715 (17,585, 25,360) 121,373 (117,726, 125,472) 

Low uptake and use 12.8% (11.0%, 14.6%) 1,007 (862, 1,145) 6,844 (6,705, 6,981) 10,120 (8,072, 11,390) 132,972 (131,675, 134,894) 

2050 

Best estimate 25.1% (22.1%, 27.5%) 2,179 (1,913, 2,384) 6,493 (6,284, 6,758) 37,022 (32,046, 42,155) 189,028 (183,895, 193,948) 

High uptake and use 28.2% (24.4%, 29.6%) 2,448 (2,120, 2,564) 6,224 (6,109, 6,551) 44,067 (36,443, 49,277) 181,950 (176,723, 189,417) 

Low uptake and use 16.8% (15.1%, 18.9%) 1,461 (1,308, 1,636) 7,212 (7,036, 7,364) 22,729 (19,260, 25,608) 203,323 (200,424, 206,546) 
Note: ADAS technologies considered were warning systems, adaptive cruise control, collision intervention systems, and dynamic driving assistance. Annual estimates of crash 
prevention are based estimated fleet share for various technologies shown in Figure 3.   
Base for percentages: Number of crashes expected to occur in each year shown given levels of ADAS market penetration, effectiveness, and use in 2017–2019. (Crashes not 
involving a car or light truck, involving 4 or more vehicles, or occurring off public roads were excluded.) 
*Cumulative crashes represent the number avoided and number anticipated to occur cumulatively in 2021 through the year shown. 
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Finally, Figures 6 and 7 present results from the one-at-a-time sensitivity analysis in which 
model parameters were varied by specified amounts (from a 50% reduction to a 50% 
increase at 10% increments) relative to their “best estimate” values used in the main 
analysis. In addition to illustrating the impact on the overall results of alternative 
assumptions about the values of these parameters, this analysis also illustrates which 
parameters are the most influential overall. Figures 6 and 7 show the impact that specified 
parameter changes have on the main study results (i.e., number of injuries and deaths 
predicted to be prevented by ADAS in 2050) in percentage terms. The 10 parameters to 
which overall results were found to be most sensitive are shown.  

Results from sensitivity analyses indicate that the overall “attractiveness weight” of ADAS 
technology has a notable impact on results and inferences. As described in the Methods 
section, “attractiveness” represents the extent to which consumers are willing to pay more 
for vehicles equipped with ADAS because of convenience, safety, and/or other factors. 
Attractiveness directly impacts ADAS uptake. Due to its influence and importance, this 
was a key parameter varied through the high and low uptake and use scenarios presented 
in the main study results. As shown in Figure 6, when attractiveness is altered to be 20% 
higher, the predicted number of fatalities avoided in 2050 increases by about 5% relative to 
the best estimate scenario. When attractiveness is altered to be 20% lower, the predicted 
number of fatalities prevented in 2050 decreases by about 5%. Parameter increases or 
decreases exhibited generally symmetric results. Additionally, results of sensitivity 
analyses for this parameter were generally similar for fatalities (Figure 6) and nonfatal 
injuries (Figure 7).  

Other variables with a meaningful influence on fatalities and nonfatal injuries avoided 
included the base effectiveness of the various technology packages in preventing both lane-
departure and non-lane-departure crashes, as well as effectiveness of the systems in 
preventing lane-departure crashes specifically in poor lighting conditions. Many traffic 
fatalities involve lane departure and occur in darkness. These results indicate that the 
ability of lane departure warning and lane keeping assistance systems to prevent lane 
departures in general, and particularly in darkness, are expected to have a substantial 
impact on the magnitude of the safety benefits of ADAS technologies. 

Also among the most influential parameters was the proportion of driving for which the 
lane departure warning/lane keeping assistance/lane centering systems included in the 
various technology packages were turned on, used, and in the case of warning systems, also 
the proportion of time that the driver responded appropriately to warnings (collectively 
termed “usage factor” in Figures 6 and 7). As noted previously, recent research has shown 
that consumers deactivate lane departure warning and lane keeping assistance systems 
more often than other systems. These results show that levels of consumer usage of lane 
departure warning and lane keeping assistance technology are expected to have an 
important influence on the actual safety benefits realized by the diffusion of ADAS 
technologies into the vehicle fleet. 

Finally, also included among parameters to which results were most sensitive was 
“industry learning effectiveness.” This is a measure of the rate at which improvements in 
technology, design, manufacturing, etc., lead to reductions in the cost to consumers of 
equipping vehicles with ADAS technologies. 
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Sensitivity results for many of these variables reveal nonsymmetric influence. Other than 
for technology attractiveness, even large increases in parameter values generally result in 
increases of less than 2.5% in the predicted numbers of fatalities and injuries prevented by 
ADAS in 2050. This is because many of the parameter values in 2050 are already 
approaching their theoretical maximum values, limiting the potential for gains to be 
achieved by increases/improvements in many of these parameters. By contrast, decreasing 
the values of the same parameters was predicted to lead to relatively larger reductions in 
the numbers of fatalities and injuries prevented by ADAS. 

Figure 6. One-at-a-time sensitivity analyses results demonstrating the 10 most impactful 
uncertain parameters* on estimated annual fatalities avoided in 2050. 

 
* Parameter definitions:  
Attractiveness weight: represents the extent to which people are willing to pay more for vehicles equipped with ADAS 
features because of convenience, safety, and other factors.  
Base effectiveness: estimated effectiveness of technology package at preventing a crash in “simple” crash situations 
(i.e., crashes without other hazards involved, like dim light, rain, being in a work zone). 
LD: lane departure, indicating parameter values that pertain to crashes that involve lane departure technology.  
Industry learning effectiveness: a measure of how quickly the industry can bring down ADAS costs to the consumer. 
P: peak value of the usage factor in 2050 relative to initial value in 2017.  
Pkg B: adaptive cruise control systems + warning systems in package A.  
Pkg C: automated safety systems (automatic emergency braking, emergency steering assistance, lane keeping 
assistance) + packages A and B. 
Pkg D: dynamic driving assistance systems + packages A, B, and C; Light condition effectiveness: a measure of how 
much poor light conditions affect the effectiveness of different ADAS technology packages. 
Usage Factor: a measure of the proportion of time that a technology is turned on and in use. 
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Figure 7. One-at-a-time sensitivity analyses results demonstrating the 10 most impactful 
uncertain parameters* on estimated annual nonfatal injuries avoided in 2050. 

 

* Parameter definitions:  
Attractiveness weight: represents the extent to which people are willing to pay more for vehicles equipped with ADAS 
features because of convenience, safety, and other factors.  
Base effectiveness: estimated effectiveness of technology package at preventing a crash in “simple” crash situations 
(i.e., crashes without other hazards involved, like dim light, rain, being in a work zone). 
LD: lane departure, indicating parameter values that pertain to crashes that involve lane departure technology.  
Industry learning effectiveness: a measure of how quickly the industry can bring down ADAS costs to the consumer. 
P: peak value of the usage factor in 2050 relative to initial value in 2017.  
Pkg B: adaptive cruise control systems + warning systems in package A.  
Pkg C: automated safety systems (automatic emergency braking, emergency steering assistance, lane keeping 
assistance) + packages A and B. 
Pkg D: dynamic driving assistance systems + packages A, B, and C; Light condition effectiveness: a measure of how 
much poor light conditions affect the effectiveness of different ADAS technology packages. 
Usage Factor: a measure of the proportion of time that a technology is turned on and in use. 

Discussion 

Vehicle technology advancements have significant potential to contribute to improvements 
in motor vehicle traffic safety in the coming years. In particular, ADAS technologies can 
help to prevent crashes by warning the driver of hazards, momentarily taking control of the 
vehicle’s steering and/or brakes. ADAS technologies have become increasingly popular in 
vehicles over the last several years. Several studies have estimated the relative crash 
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involvement of vehicles with versus without particular ADAS technologies. However, 
predicting the overall number of crashes, injuries, and deaths that will be prevented by 
ADAS in the future requires consideration of a wide array of interconnected factors that all 
act to influence bottom-line safety benefits, including not only the effectiveness of the 
technology itself but also factors influencing consumer uptake and use of such technologies. 
This project sought to estimate how many motor vehicle crashes, injuries, and deaths ADAS 
technologies are likely to prevent over the next 30 years.  

Overall, this project makes a unique contribution to the field by offering a novel, systems-
grounded approach to modeling the uncertain, complex, and dynamic factors that may 
affect the estimates of ADAS technology adoption and their resulting crash avoidance 
benefits over time. Using a system dynamics approach, the current study estimates that 
improvements in ADAS technology and increases in uptake and use are likely to prevent 
approximately 5,800 traffic fatalities (or approximately 16% of fatalities) and 331,000 
injuries (12% of injuries) that would otherwise be expected to occur in year 2030 if ADAS 
effectiveness, uptake, and use were to remain at the levels they were in 2017–2019 (the 
base year for the models used in this project). Moreover, the current study estimates that 
increased effectiveness, uptake, and use of ADAS technologies will result in the prevention 
of approximately 249,400 traffic fatalities and 14 million nonfatal injuries cumulatively in 
2021 through 2050. 

While these represent critical potential contributions to road safety, there are still many 
scenarios and contexts in which ADAS technologies may not be able to effectively intervene, 
as reflected in estimates of crashes, nonfatal injuries, and deaths expected to remain on 
U.S. roads even in 2050, when the current study predicts that basic ADAS technologies will 
be ubiquitous and a substantial majority will be equipped with collision intervention 
systems including automatic emergency braking and lane keeping assistance. The model 
estimates that in the highest ADAS uptake and use scenario considered, ADAS would be 
expected to prevent approximately 38% of all traffic fatalities that would have occurred in 
2050 given current levels of ADAS effectiveness, uptake, and use, meaning that 62% of 
those fatalities (or approximately 27,000 fatalities) would still be expected to occur despite 
the anticipated ubiquity of ADAS by 2050. These findings are consistent with previous 
research cautioning that automated vehicle safety systems are unlikely to eliminate all or 
most traffic fatalities and injuries in the near future (e.g., Mueller, 2020; Shetty et al., 
2021). Thus, consistent with the Safe System Approach, which calls for a layered, 
redundant approach to safety, there remains a clear need to continue to invest in a wide 
array of proven traffic safety measures, including but not limited to vehicle technology.  

With respect to underlying ADAS technology diffusion over time, the model forecasts were 
similar to previous forecasts by others for basic warning systems, but somewhat lower for 
collision intervention features and partial driving automation. HDLI (2022) estimates that 
in 2045, the proportion of registered vehicles in the United States that are equipped with 
both lane departure warning and blind spot monitoring systems and automatic emergency 
braking will reach 95%. Similarly, the current study predicts 95% of registered vehicles will 
be equipped with lane departure warning and blind spot monitoring systems in 2045. 
However, the current study predicts only 65% of the vehicle fleet will be equipped with 
automatic emergency braking (Packages C and D) in 2045, rising to just under 85% in the 
most optimistic scenario. In 2050, HDLI predicts the proportion of vehicles equipped with 
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SAE Level 2 partial driving automation will be 90%, reaching 95% “sometime after 2050.” 
By contrast, even under the highest technology diffusion scenario considered, the current 
study predicts that 69% of U.S. vehicles will be equipped with such systems (Package D) in 
2050. Estimates and forecasts of SAE Level 2 vehicle diffusion and higher levels of 
automation have shown wide variation in the literature and have been typified by 
considerable uncertainty (Collie et al., 2017; Lewis & Grossman, 2019; Litman, 2022). 
Regarding fleet share of vehicles without any ADAS technology (i.e., not even basic warning 
systems), uncertainty peaked around year 2035, with 5%–25% projected fleet share, but 
dropped significantly by 2050, by which time over 95% of all vehicles on U.S. roads were 
predicted to be equipped with at least basic ADAS in even the lowest technology diffusion 
scenario considered. 

In terms of overall crash prevention, the model results showed reasonable agreement with 
previous studies that have attempted to quantify the numbers of crashes, injuries, and 
deaths potentially preventable by ADAS given large-scale deployment (e.g., Benson et al., 
2018; IIHS, 2022; Mueller et al., 2020; Sherony & Gabler, 2020). The current study 
estimates that ADAS will help to avoid roughly 15%–30% of crashes and nonfatal injuries 
and 20%–40% of traffic fatalities in 2050—corresponding to nearly 15,000 total annual 
fatalities and more than 800,000 nonfatal injuries avoided in 2050. Notably, the scenarios 
indicated rapid safety gains in the first two decades modeled, with the rate of increase in 
the annual number of crashes avoided slowing in later years. The predictions of “best 
estimate” and “high uptake & use” scenarios became relatively close by 2050, while the low 
uptake & use scenario remained considerably lower; this may be explained by the 
assumption that by this time, nearly all vehicles in the fleet would have ADAS technology, 
reducing opportunities for additional safety benefits attributable solely to increases in 
technology uptake.  

In another study that sought to estimate future crash prevention by ADAS in relation to its 
diffusion into the vehicle fleet, Sherony & Gabler (2020) estimated that a theoretical suite 
of ADAS features would reduce severe injuries to vehicle occupants by 33% in 2040. While 
the current study estimates smaller proportions of avoided injuries, Sherony & Gabler 
examined injuries coded as 2 or greater on the Abbreviated Injury Scale (AIS), which 
represent approximately the 15% most severe injuries that occur in crashes (NHTSA, 2023). 
Thus, their estimates may be more comparable to the current study’s estimates of fatalities 
than injuries. The current study estimates that ADAS will avoid 28% of fatalities in 2040 in 
the best estimate scenario and 33% in the high uptake & use scenario. Sherony & Gabler’s 
estimates are also greater than those of the current study because they include 
Intersection-ADAS (I-ADAS), not considered in the current study, which they estimate 
would help to prevent a substantial proportion of straight-crossing-path (“T-bone”) and left-
turn-across-path crashes. The current study did not consider I-ADAS as it is not yet 
available on vehicles available for purchase in the United States at the time the study was 
being performed, and existing ADAS technologies have been shown to have little if any 
ability to intervene in these types of crashes (AAA, 2022). 

Notably, this study predicts ADAS will avoid greater proportions of fatalities compared to 
injuries and crashes. The research team posits that this difference is due to underlying 
assumptions regarding the ability of the types of ADAS technologies considered to prevent 
specific types of crashes and the relative severity of those types of crashes as reflected in 
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the data input into the model (i.e., police-reported crashes that occurred in the United 
States in 2017–2019). For example, the model assumes that lane departure crashes are 
highly avoidable when appropriate usage of the technology is high. The proportion of 
crashes that involve lane departure is higher among fatal crashes (approximately half) than 
among nonfatal crashes (approximately one-third), thus high effectiveness and use of 
technology that prevents lane departures would be expected to yield a greater percentage 
reduction in fatalities than in total crashes. Alternatively, if future effectiveness and/or use 
of lane keeping technologies differ from current study assumptions and/or if forward 
collision prevention technologies are relatively more effective, the relative proportions of 
fatal versus nonfatal crashes avoided by ADAS would differ.   

From the sensitivity analysis of ADAS diffusion scenarios, a key finding was the 
importance of the attractiveness of ADAS technology to the public, and to a lesser extent 
also industry learning on the numbers of future deaths and injuries avoided by ADAS and 
the rates at which benefits accrue. These measures notably impact ADAS uptake through 
the willingness of consumers to pay for ADAS-equipped vehicles because of the safety and 
convenience they afford, as well as the speed in which industry brings down ADAS costs to 
the consumer. In other words, speed of uptake through these and potentially other 
mechanisms has an important impact on the numbers of deaths and injuries potentially 
prevented over time. To maximize safety benefits and the rate at which they accrue, there 
is a need for industry and other stakeholders to increase the attractiveness of ADAS-
equipped vehicles to consumers and to ensure that their cost does not reduce their 
attractiveness or render them unaffordable. 

Sensitivity analyses also revealed that the proportion of time that drivers choose to use the 
technology may also have a major impact on the magnitudes of future safety benefits, 
especially for lane departure warning and lane keeping assistance systems. Previous 
research has found consumers often choose to turn these systems off (e.g., Reagan & 
McCartt, 2016). More work is needed to improve drivers’ experiences with lane departure 
warning and lane keeping assistance systems, so that users do not opt to deactivate them 
and thus negate their potential safety benefits.  

Results of the sensitivity analysis also highlight the potential role for future technological 
improvements such as improved performance in low-light conditions. This is especially 
important for prevention of severe injuries and deaths. Half of all traffic fatalities in 2017–
2019 occurred in darkness, as did more than three quarters of all pedestrian fatalities. 
Research has shown that many systems available on vehicles today perform less well in 
darkness than they do in daylight (Cicchino, 2022). While many of the systems examined 
also tend to be less effective in other specific scenarios such as when driving in adverse 
weather or roadway surface conditions, sensitivity analysis suggests that improving ADAS 
performance in these conditions is much less important than improving performance in 
darkness, as the proportions of crashes that occur in such conditions are smaller.  
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Limitations and Future Research 

Limitations 

The current study has several limitations that should be noted. In general, the current 
study sought to make predictions about future crashes avoided by ADAS. The general 
approach to doing this was to model the number and type of crashes that would occur in 
future years given current availability, effectiveness, and use of ADAS technologies; the 
probability that a given vehicle involved in a future crash would be equipped with 
particular technology; the probability that the technology would be in use (i.e., not 
deactivated) at the time; and the probability that the technology would be able to avoid the 
crash given its presence and use (a function of its base effectiveness as well as the impact of 
any special circumstances, e.g., darkness) that could reduce its effectiveness.  Each stage of 
this process incorporates many assumptions with the potential to influence study outcomes. 

When estimating the number and characteristics of future crashes, the study sampled 
police-reported crashes that occurred in 2017–2019 and assumed that future years would be 
similar, before accounting for crashes prevented by ADAS, other than that the absolute 
number of crashes would increase due to uniform increases in the total amount of driving. 
The study did not attempt to account for other external factors unrelated to ADAS that 
might affect the number or characteristics of crashes in the United States. For example, 
nonuniform changes in driving patterns (e.g., differing trends in urban versus rural areas 
or between different demographic groups) could influence the total number of crashes, their 
characteristics, the probability that they could be prevented by ADAS, or the probability 
that the vehicles involved would be equipped with ADAS, in ways that the current study 
did not account for. The COVID-19 pandemic presents a salient contemporary example. 
Data from the NHTSA indicate that rate of traffic fatalities per mile driven increased to 
their highest levels in more than a decade (and much higher than in the base year used in 
the current study) in 2020 and remained elevated in 2021, leading to a large increase in the 
total number of traffic fatalities (Stewart, 2023). Although the study methodology should 
still validly estimate the percentage of crashes, injuries, and deaths avoided by ADAS in 
the event of changes to the overall crash rate or fatality rate, it appears that the 
characteristics of fatal crashes also shifted. For example, Tefft & Wang (2022) found large 
increases in the proportion of single-vehicle fatal crashes in 2020. Changes in the 
characteristics of future crashes could potentially change the percentage of future crashes 
preventable by ADAS.   

Another limitation of the approach is that the study focused on estimating the probability 
that ADAS would prevent the occurrence of a given crash. In reality, ADAS might fail to 
prevent some crashes yet still reduce the severity of any resulting injuries (e.g., by reducing 
impact speed). The current study might thus underestimate to some degree the numbers of 
fatalities and injuries prevented by ADAS. 

The study is also limited by the quality of the data used as inputs. Several studies have 
indicated that police-reported crash and injury data often underestimate total vehicle 
related injuries, particularly those involving pedestrians, bicyclists, single-vehicle crash 
events, and injuries caused in situations that don’t trigger the threshold for reporting or in 



33 

 

which injured parties perhaps seek to avoid contact with law enforcement for various 
reasons. NHTSA (2023) estimates that as many as 32% of nonfatal injury crashes and 60% 
of crashes not resulting in injuries go unreported. Harmon et al. (2021) estimated that for 
every police-reported crash involving a pedestrian, there were an additional 8 to 10 
pedestrians treated in emergency departments for injuries sustained in crashes not 
reported to the police. Given the focus of this work on understanding broad trends in fatal 
and nonfatal injury, these data should appropriately capture the focal outcomes; however, it 
is important to interpret the model results as relating to crash prevention among the police-
reported incidents, which are not necessarily transferrable to all traffic-related crashes and 
injuries.  

The study did not attempt to account for all possible changes or events that might influence 
the availability and uptake of ADAS-equipped vehicles. In the years since the onset of the 
COVID-19 pandemic there have been previously unanticipated supply chain disruptions as 
well as large increases in the price of new and used vehicles. Shifts related to consumer 
interest in battery-electric vehicles and/or associated policy could influence the rate of fleet 
turnover and thus the rate at which older vehicles without ADAS are replaced by new 
vehicles with ADAS. Also not considered were cybersecurity issues, which could potentially 
influence consumer demand for or use of technologies that automate parts of driving. Such 
factors were deemed beyond the scope of the current study but should be investigated in 
future research.   

While the research team sought the best available data regarding the effectiveness of 
existing ADAS technologies, existing research and literature do not quantify the 
effectiveness of all types of ADAS, the effectiveness of all implementations of any particular 
type of ADAS, or the impact of adverse conditions (e.g., darkness, rain) on the effectiveness 
of most systems. Thus, in many cases, the research team had to rely on expert judgment to 
supplement existing literature and data. In addition, the effectiveness of future iterations of 
ADAS are by definition unknown. The research team assumed that there would be 
improvements in the base effectiveness of systems, as well as improvements in their 
effectiveness under adverse conditions such as darkness. The research team used its best 
judgment in estimating the eventual effectiveness of the systems considered as well as the 
rate at which the technology would mature, however, the actual evolution of the 
effectiveness of these technologies may be faster or slower than anticipated. Note that 
probabilistic uncertainty analyses revealed that even large increases in ADAS effectiveness 
had little impact on the main study results; however, the numbers of crashes, injuries, and 
deaths prevented may be lower than reported here if actual ADAS effectiveness is 
substantially lower than assumed.  

Relatedly, the research team made some simplifying assumptions to limit the scope of the 
current study. For example, research has shown that ADAS that are reliant on cameras 
perform poorly in bright direct sunlight (Yoneda et al., 2021); however, the current study 
does not account for the proportion of systems that are camera-based or the distribution of 
the angle of the sun relative to vehicle trajectories in the crashes examined. Many of today’s 
ADAS have been shown to be reasonably effective in preventing crashes at low speeds but 
far less effective at higher speeds; however, the current study was unable to consider speed 
due to limitations of the input data, which do not report pre-crash speeds in most crashes. 
While the ability of ADAS to intervene in higher-speed crashes may improve in the future, 
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the current study’s inability to account for speed likely resulted in some degree of 
overestimation of the numbers of crashes avoided, especially early in the study period 
before substantial maturation of the relevant technologies.  

While the study did attempt to account for maturation of the technology over time, this was 
operationalized in terms of increasing effectiveness in preventing types of crashes deemed 
preventable in the first place. For example, the study does not account for future ADAS, 
such as the I-ADAS described by Sherony & Gabler (2020), that could prevent turn-across-
path or “T-bone” crashes. Relatedly, the study also did not attempt to predict the safety 
impacts of higher levels of automation, e.g., SAE Levels 3 and higher, as no such vehicles 
are yet available for consumers to purchase in the United States as of when this research 
was performed, and thus there were no data on which to base any assumptions about their 
uptake, use, or safety performance. 

Finally, the study also did not account for crashes caused directly or indirectly by ADAS. It 
is theoretically possible that ADAS could cause crashes directly through malfunctions or 
errors, as well as indirectly by performing unexpected movements that surprise other 
drivers. The current study assumes such crashes would be extremely rare. ADAS could also 
contribute indirectly to crashes if drivers do not understand it, rely on it excessively, or 
misuse or abuse it on purpose (e.g., using partial driving automation systems to facilitate 
disengagement from driving or engagement in distracting secondary tasks). While there is 
some suggestive evidence that drivers may do this (e.g., Mueller et al., 2022), there are not 
yet sufficient data to quantify the numbers of new crashes to which ADAS might 
contribute. 

Future directions and research needs 

The ADAS technologies included in the current study may be viewed as “building blocks” of 
higher levels of automation. While this study intentionally excluded SAE Level 3–5 vehicles 
due to the lack of data to inform baseline assumptions about their crash involvement or 
crash prevention performance, future research will need to focus on estimating the long-
term fleet penetration of more highly automated systems and defining realistic expectations 
of their safety performance. To date, estimates regarding readiness for deployment of 
higher-level automated vehicles (i.e., SAE Level 3 or above) are extremely variable (SAE, 
2021). Some manufacturers previously predicted that highly automated vehicles would be 
available to consumers by 2020 (Lewis & Grossman, 2019) and “fully automated” vehicles 
by 2022 (Collie et al., 2017). More conservative estimates range from 2045 for half of all 
new vehicles to be “autonomous” (Litman, 2022) to 2050 before vehicles equipped with 
Level 3 and higher automation will achieve even 66% of market share (Nieuwenhuijsen et 
al., 2018). In the current study, it was only in the high uptake & use scenario that Level 2 
automation was predicted to reach 66% fleet share in 2050. Speculation about the safety 
effects of fully automated vehicles in relation to crashes involving other vehicles, trucks, 
pedestrians, bicyclists, and motorcyclists is even more variable. Transportation researchers 
need valid and reliable estimates of not only adoption rates, but also crash avoidance 
performance under a wide range of scenarios, especially those likely to produce fatal and 
serious injuries.  
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Relatedly, there is a need for future research to examine mode-specific safety effects of 
ADAS technologies. The current study was unable to provide estimates of the safety 
benefits of ADAS disaggregated by road-user type. Although crashes involving pedestrians, 
bicyclists, passenger vehicles, and large trucks were all included in the study, the data 
required to specify precise probabilities of crash avoidance for specific crash types for 
specific modes of travel were generally not available, thus the crash avoidance probabilities 
used in the current study represented averages over all included modes and road-user 
types. However, in practice, the probability that a given ADAS technology would prevent a 
car from striking another car versus a large truck versus a pedestrian might differ, and the 
simulation model would need to incorporate such mode-specific crash avoidance 
probabilities to produce reliable mode-specific estimates of safety benefits. Additionally, 
this study excluded crashes that involved neither a passenger car nor a heavy truck. Future 
research and data to support assumptions, model decisions, and parameters would be 
valuable in refining model performance by mode and/or creating separate SD models that 
can be calibrated to specific road-user types, ADAS performance, and crash scenarios. 

In addition, as the web of factors affecting the rollout of vehicles equipped with ADAS and 
higher levels of automation can be refined with the support of additional research, there is 
also a need to further refine the estimated safety outcomes. For example, the current study 
was unable to account for the relationship between pre-crash vehicle speed and the 
probability of crash avoidance. Past studies have found that many ADAS, such as 
pedestrian detection systems, do not perform well at high speeds (AAA, 2019; Cicchino, 
2022). However, the crash databases used as inputs in the current study contain no 
information on pre-crash speed for many crashes, and the reliability of the speed data, 
when present, is largely unknown. Thus, it is possible that ADAS would fail to prevent 
some of the crashes that the current study predicted it would prevent, due to the speeds 
involved. Reliable pre-crash speed data would enable more precise estimates of safety 
benefits. Moreover, it would also enable estimation of the safety impact of improving ADAS 
performance at higher speeds, or alternatively, of other strategies to reduce speeding. 
Relatedly, the current study did not consider technology that would restrict vehicles from 
exceeding speed limits. Such technologies are already being introduced on vehicles 
available for sale in Europe (European Transport Safety Council, 2023). Given the 
importance of kinetic energy management as foundational to a Safe System Approach to 
injury prevention, future research and model expansion to account for dynamics and 
influences related to speed would be useful. 

Additionally, several studies in the planning/travel behavior literature speculate on how 
higher-level automation will affect the relationships among travel behavior and land 
development, with many predicting substantial increases in trip generation, vehicle miles 
traveled, and automobile dependency (Gruel et al., 2016; Larson et al., 2020; Wellik et al., 
2020; Zakharenko, 2016). The extent to which these conclusions apply at lower levels of 
automation has not been examined. However, it is logical to assume that technology that 
eases the mental burden or opportunity cost of driving—such as technology that explicitly 
permits the driver to disengage from driving and attend to work or other interests while 
traveling—may lead to increases in individuals’ willingness to travel more further and 
more frequently, thus increasing exposure to conditions associated with crashes. More 
research is needed to understand how increasing levels of vehicle automation may influence 
such factors, and how that will in turn impact traffic safety. 
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Finally, motor vehicle traffic injuries and fatalities in the United States disproportionally 
affect disadvantaged populations including those with lower levels of education (Harper, 
2015) and Black and Indigenous communities (GHSA, 2021; Raifman et al., 2022). There is 
a need to further explore the ways in which anticipated benefits of ADAS technology are 
likely to be distributed across the population. The current study predicted the future fleet 
share of ADAS-equipped vehicles at a national level; however, in practice, adoption rates 
are likely to vary greatly in relation to demographic characteristics such as education, 
income, age, and geography (Girasek and Taylor, 2010; Metzger et al., 2020). Although 
beyond the scope of the current study, research is needed to examine ways in which ADAS 
and vehicle automation are likely to mitigate or exacerbate inequities in safety and 
mobility. 

Conclusions  

Predicting how many crashes, injuries, and deaths are likely to be prevented in the future 
by advanced vehicle technology requires consideration of a wide array of interconnected 
factors that all act to influence bottom-line safety benefits. This study produced a 
simulation model and test bed to consider the complex dynamics of ADAS diffusion into the 
vehicle fleet and the safety outcomes expected to result. Results suggest that ADAS 
technologies will prevent large numbers of crashes and save many lives in the future. While 
the study considered a wide range of potential technology uptake and use scenarios, in the 
scenario the authors regard as most probable, ADAS is anticipated to avoid over 249,000 
traffic fatalities, 14 million nonfatal injuries, and 37 million police-reported crashes 
cumulatively between 2021 and 2050. However, even accounting for the avoidance of these 
crashes, the study predicts that nearly 900,000 traffic fatalities, 76 million nonfatal 
injuries, and 189 million crashes will still occur over the same period. This research model 
makes an important contribution to the field in that it takes into account various exogenous 
and endogenous factors to forecast the safety outcomes associated with the proliferation of 
ADAS and partial vehicle automation across the vehicle fleet. While the current study has 
limitations related to its underlying data sources, assumptions, and modeling decisions 
constraining the scope of the study, it offers a robust way to conceptually examine ADAS 
system dynamics, transparently test assumptions, and produce crash avoidance estimates 
over a long time horizon. Future research could expand upon this methodology and account 
for additional factors, higher levels of automation, and advancements in knowledge 
regarding the effectiveness and performance of such technologies, as well as further 
disaggregate estimated safety benefits in relation to demographic and other road user 
characteristics. From the current study, it is clear that ADAS technologies are expected to 
make a significant contribution to preventing injuries and saving lives on U.S. roads; 
however, it is not realistic to expect for them to prevent all or most crashes within the next 
30 years. Thus, there remains a need to continue to invest in a wide array of proven traffic 
safety measures including but not limited to vehicle technology.  
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Appendices 

Appendix A. Assumptions and Decision Rules Regarding Crashes ADAS May Help to Prevent 

As described in the Methods section, determination of the probability that a particular ADAS technology would avoid or 
prevent a given crash was assessed in two major steps. In the first step, the research team assessed whether each technology 
considered in the study had any possibility (versus none) to prevent a given crash based solely on the general type of crash as 
defined by the combination of the crash type/geometry (FARS and CRSS variable: acc_type) and the pre-crash maneuvers of 
each vehicle (FARS and CRSS variable: p_crash2).  

Decisions regarding whether a given technology had any potential to prevent a particular type of crash were made 
independently by two members of the research team based on literature reviews and expert opinion. Disagreements were 
resolved through discussions with the larger research team and are summarized below in Table A1. Crashes deemed 
potentially preventable are identified by a “Y” in the corresponding cell; empty cells denote no possibility of prevention.  

The following broad categories of crashes were deemed not preventable by ADAS and thus not examined in further detail nor 
shown in the tables: crashes resulting from vehicle malfunctions (e.g., tire blow out, stalled engine), crashes involving pre-
crash loss of control/traction, wrong-way crashes, straight-crossing-path (“T-bone”) collisions, turn-across-path collisions (AAA, 
2022), crashes occurring on non-trafficways or ramps, crashes involving vehicles entering or leaving driveways, and crashes 
involving objects (e.g., debris) on the roadway.  

Tables A1 shows the specific combinations of crash type and pre-crash maneuvers that the team determined ADAS had some 
possibility of preventing (and thus carried forward to the next step of the analysis) versus those deemed not preventable. 

Note that the purpose of this step was simply to distinguish between crashes that the ADAS considered in the current study 
had any possibility versus no possibility of preventing, not to determine decisively that a particular crash would be prevented. 
The probability of prevention for crashes deemed possibly preventable in this step is assessed subsequently in the next step of 
the analysis. 

 

 



44 

 

Table A1 a-g. Decision rules regarding potentially avoidable crashes according to pre-crash maneuver, crash type, and specific 
ADAS technology type * 

 

 

  

PD BSD LDW FCW ACC AES AEB LKA DDA PD BSD LDW FCW ACC AES AEB LKA DDA

Over the Lane Line or Edge of Road (10-13) Y Y Y Y Y Y Y Y Y

Road End Depature Crash (14) Y Y Y Y Y Y Y Y Y Y Y

Turning Left or Right (15, 16) Y Y Y Y Y Y Y Y

Going Straight (17) Y Y Y Y Y Y Y Y
Vehicle in Lane Stopped, Decelerating (50-53) Y Y Y Y Y Y Y Y Y Y

Pedestrian in Road or Approaching Road (80, 
81, 82) Y Y Y Y Y Y

Y; 13 
only Y Y Y Y

Crash Type (FARS, CRSS "acc_type" codes)Pre-crash maneuver (FARS/CRSS "p_crash2" 
codes) A.  Roadside Departure (1, 6) B.  Motorist Forward Impact (11-14)

PD BSD LDW FCW ACC AES AEB LKA DDA PD BSD LDW FCW ACC AES AEB LKA DDA

Over the Lane Line or Edge of Road (10-13) Y Y Y Y Y Y Y Y Y Y Y

Road End Depature Crash (14) Y Y Y Y Y Y Y Y Y Y Y Y Y

Turning Left or Right (15, 16) Y Y Y Y Y Y Y

Going Straight (17) Y Y Y Y Y Y Y

Vehicle in Lane Stopped, Decelerating (50-53) Y Y Y Y Y Y Y Y Y Y
Pedestrian in Road or Approaching Road (80, 
81, 82) Y Y Y Y Y

C.  Rear-End Another Vehicle (20, 24, 28) D.  Forward Impact (38, 40)

Crash Type (FARS, CRSS "acc_type" codes)Pre-crash maneuver (FARS/CRSS "p_crash2" 
codes)
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Table A1. Continued.

 

 

*Note: a few cells indicate where only specific crash type codes were relevant (e.g., “13 only” in Table 2B), instead of all crash type codes represented by the given 
box (e.g., in that example, codes 11-14). 
Abbreviations: DDA: dynamic driving assistance; LKA: lane keeping assistance; AEB: automatic emergency braking; AES: automatic emergency steering; ACC: 
adaptive cruise control; FCW: forward collision warning; LDW: lane departure warning; BSD: blind spot detection; and PD: pedestrian detection. 
Color coding shows technologies grouped into packages in subsequent analyses. Light blue codes represent those technologies included in Package A (i.e., FCW 
and everything to the left of it). The next level of darkness represents those in Package B (i.e., ACC along with everything to the left of it). Package C included LKA 
and everything to the left. Finally, Package D included all ADAS technologies listed here and represents an SAE Level 2 system. 

  

PD BSD LDW FCW ACC AES AEB LKA DDA PD BSD LDW FCW ACC AES AEB LKA DDA

Over the Lane Line or Edge of Road (10-13)
Y Y Y Y

Y; 50,64 
only Y

Y; 50,64 
only

Y; 50,64 
only

Road End Depature Crash (14) Y Y Y Y Y Y

Turning Left or Right (15, 16) Y Y Y

Going Straight (17) Y Y Y Y Y

Vehicle in Lane Stopped, Decelerating (50-53) Y Y Y Y Y Y Y Y
Pedestrian in Road or Approaching Road (80, 
81, 82) Y Y Y Y Y

Crash Type (FARS, CRSS "acc_type" codes)

E.  Sideswipe/Angle Collisions (46&47) F.  Same Trafficway, Opp. Direction (50, 58, 60, 64)
Pre-crash maneuver (FARS/CRSS "p_crash2" 

codes)

PD BSD LDW FCW ACC AES AEB LKA DDA

Over the Lane Line or Edge of Road (10-13) Y Y

Road End Depature Crash (14)

Turning Left or Right (15, 16) Y

Going Straight (17) Y
Vehicle in Lane Stopped, Decelerating (50-53) Y Y Y
Pedestrian in Road or Approaching Road (80, 
81, 82) Y Y

Pre-crash maneuver (FARS/CRSS "p_crash2" 
codes)

Crash Type (FARS, CRSS "acc_type" codes)
G.  Vehicle Turning Right or Left Across Other 

Vehicle (70 & 72)
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Estimating the Probability of Avoidance/Prevention for Crashes Deemed Potentially Preventable 

As described previously, if it was determined that there was any possibility that an ADAS technology considered in the current 
study could have helped to prevent a given crash, the model then estimated the probability that the ADAS would successfully 
avoid or prevent the crash. To do this, the model took into account the assumed baseline effectiveness of the relevant ADAS for 
the relevant crash type, any hazards present in the crash that would reduce system effectiveness (e.g., rain, darkness, a work 
zone), and the probability that the relevant ADAS would be activated or in use at the time, as opposed to turned off. 

Given the prevalence of lane departure crashes (approximately one third of nonfatal and one half of fatal crashes) and the high 
probability of turning off lane departure and lane keeping technologies as compared to other ADAS technologies (Reagan & 
McCartt, 2016), estimates of effectiveness were disaggregated to address lane-departure crashes and non-lane-departure 
crashes separately, and probabilities of system use were disaggregated to address lane-keeping features (lane departure 
warning and lane keeping assistance) separately from other features typically present on the same vehicle (e.g., forward 
collision warning, automatic emergency braking, etc.). The table below displays the assumed model effectiveness estimates, 
disaggregated according to whether it was a lane departure crash or not and if the vehicle was equipped with LDW or LKA 
technology or not. 

The top two rows provide baseline technology effectiveness estimates (i.e., proportion of crashes likely prevented) according to 
whether it was a lane departure crash and whether the vehicle had relevant lane departure technologies, for each technology 
package (A–D). The next four rows include multipliers that were used to reduce the likely effectiveness of the technology given 
a variety of hazardous conditions. The final row provides estimates for technology use (i.e., whether or not the technology was 
turned on).  

For each estimate, there is an Initial value (i.e., assumed effectiveness in 2017) and a Final value, representing the research 
team’s assumptions regarding the potential improvement in the technology by 2050. Values in intermediate years were 
estimated using an S-shaped curve to estimate technological maturity and improvement between these Initial and Final 
values.
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Table A2. ADAS Technology Effectiveness and Use Parameters Included in Model to Produce the Results Presented in This Report. 

 Package A: Package B: Package C: Package D: 

 FCW. LDW, BM, and PD ACC + Package A AEB, ESA, and LKA + Package B DDA + Package C 

Base Effectiveness 

N
o

n
-l

an
e

-d
e

p
ar

tu
re

 
cr

as
h

es
a
 

Initial / Finald 

With LDW: 0.10 / 0.20 
Without LDW: 0.10 / 0.20 

Initial / Finald 

With LDW: 0.30 / 0.70 
Without LDW: 0.30 / 0.70 

Initial / Finald 

With LKA: 0.40 / 0.90 
Without LKA: 0.50 / 0.90 

Initial / Finald 

With LKA: 0.70 / 0.95 
Without LKA: 0.70 / 0.95 

Potential for crash mitigation is limited 
because warnings do not directly prevent 
crashes. Values same for “With LDW” and 
“Without LDW” because effectiveness in 
preventing non-lane-departure crashes is 
assumed independent of LDW. 

Although intended as a convenience 
technology, ACC may help to prevent 
some crashes by reducing the driver’s 
cognitive load. There is room for 
considerable technological maturation with 
respect to performance in urban stop-and-
go traffic. 

LKA may reduce the risk of some crashes 
that were preceded by a lane departure 
but which were not classified as lane-
departure or road-departure crashes (e.g., 
a rear-end crash or sideswipe that was 
preceded by an unintentional lane 
departure). 

Same values used with and without LKA 
because DDA centers the vehicle in its 
lane when the system is active. 

La
n

e-
d

ep
ar

tu
re

 c
ra

sh
es

a
 

Initial / Final  
With LDW: 1.00 / 1.00 
Without LDW: 0.1 / 0.15 

Initial / Final  
With LDW: 1.00 / 1.00 
Without LDW: 0.1 / 0.15 

Initial / Final  
With LKA: 1.00 / 1.00 
Without LKA: 0.1 / 0.15 

Initial / Final  
With LKA: 1.00 / 1.00 
Without LKA: 0.1 / 0.15 

Majority of lane-departure crashes would 
not be prevented if lane-keeping features 
are deactivated, however, use of FCW and 
BSM may prevent some lane departures 
from resulting in collisions. 

Majority of lane-departure crashes would 
not be prevented if LDW is turned off, 
however, use of FCW and BSM may 
prevent some lane departures from 
leading to crashes. Addition of ACC is not 
expected to meaningfully increase 
probability of avoiding lane departure 
crashes. 
 

Majority of lane-departure crashes would 
not be prevented if LKA features are 
deactivated, however, use of AEB may 
prevent some lane departures from 
resulting in collisions. 

Deactivating LKA features would 
functionally deactivate DDA, thus values 
for lower packages (without DDA) apply 
when LKA is deactivated. 

Reduction in Effectiveness 

Lo
w

-v
is

ib
ili

ty
 c

o
n

d
it

io
n

s
 

 (
e.

g
., 

ra
in

)b
  

Modifiers to Initial / Final  
With LDW: 0.75 / 0.95 
Without LDW: 0.75 / 0.95 

Modifiers to Initial / Final  
With LDW: 0.90 / 0.95 
Without LDW: 0.90 / 0.95 

Modifiers to Initial / Final  
With LKA: 0.85 / 0.95 
Without LKA: 0.85 / 0.95 

Modifiers to Initial / Final  
With LKA: 0.90 / 0.98 
Without LKA: 0.90 / 0.98 

Some reduction in effectiveness is low 
visibility is anticipated initially. This is 
expected to improve over time as new 
sensing modalities are used. 

Performance of ACC is not reduced 
substantially by low visibility; however, use 
of longer-range sensors in the future is 
anticipated to reduce performance 
decrement associated with low visibility. 

Collision intervention systems are primarily 
designed for low warning time collisions, 
which is a major vector of low visibility 
fatalities. Radar-based systems should not 
be affected significantly by low-visibility 
conditions such as rain. 

Depending on visibility conditions and type 
of sensors used, current DDA systems 
may automatically deactivate. It is possible 
that future DDA may mitigate the risks of 
low visibility driving by selecting routes that 
avoid major hazards. 
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 Package A: Package B: Package C: Package D: 

A
d

ve
rs

e 
su

rf
ac

e 
co

n
d

it
io

n
s

 
 (

e.
g

., 
ic

e)
b
 

Modifiers to Initial / Final  
With LDW: 0.30 / 0.40 
Without LDW: 0.30 / 0.40 

Modifiers to Initial / Final  
With LDW: 0.75 / 0.85 
Without LDW: 0.75 / 0.85 

Modifiers to Initial / Final  
With LKA: 0.85 / 0.90 
Without LKA: 0.70 / 0.90 

Modifiers to Initial / Final  
With LKA: 0.90 / 0.95 
Without LKA: 0.90 / 0.95 

Alerting is judged to be of little value in the 
types of crashes most common in adverse 
surface conditions as driver is assumed to 
be engaged in the driving task due to 
challenging conditions, thus the warnings 
are expected to be relatively less 
beneficial, with limited potential to improve 
with technological maturation. 

Alerting is judged to be of little value in the 
types of crashes most common in adverse 
surface conditions as driver is assumed to 
be engaged in the driving task due to 
challenging conditions, thus the warnings 
are expected to be relatively less 
beneficial, with limited potential to improve 
with technological maturation. 

Note these values only apply to crashes 
not preceded by loss of control/traction. 
Loss of control/loss of traction crashes 
were deemed not preventable by ADAS. 
Adverse surface conditions are expected 
to reduce system performance though not 
greatly in situations with no loss of traction; 
and there is room for improvement with 
technological maturation. 

Depending on visibility conditions and type 
of sensors used, current DDA systems 
may automatically deactivate. It is possible 
that future DDA may mitigate the risks of 
adverse surface conditions driving by 
selecting routes that avoid major hazards. 

D
ar

kn
es

sb
 

Modifiers to Initial / Final  
With LDW: 0.90 / 0.95 
Without LDW: 0.50 / 0.70 

Modifiers to Initial / Final  
With LDW: 0.90 / 0.95 
Without LDW: 0.50 / 0.70 

Modifiers to Initial / Final  
With LKA: 0.75 / 0.95 
Without LKA: 0.70 / 0.90 

Modifiers to Initial / Final  
With LKA: 0.80 / 0.95 
Without LKA: 0.80 / 0.95 

Most warning systems are not severely 
impaired by dim lighting or darkness. 
Since driver fatigue plays a major role in 
crashes occurring in darkness, alerts are 
particularly important in this scenario, 
potentially offsetting any decrement in the 
performance of the warning system itself. 

Most warning systems are not severely 
impaired by dim lighting or darkness. 
Since driver fatigue plays a major role in 
crashes occurring in darkness, alerts are 
particularly important in this scenario, 
potentially offsetting any decrement in the 
performance of the warning system itself 

Research has shown that some collision 
intervention systems perform less well in 
certain crash types in darkness (e.g., AEB 
in crashes with pedestrians). There is 
opportunity for improvement with 
technological maturity. LKA is of minimal 
relevance to non-lane-departure crashes 
in dim lighting but may help to avoid some 
other crash types that were preceded by 
an unintended lane departure. 

Deactivating lane-keeping features would 
functionally deactivate DDA, thus values 
for lower packages (without DDA) apply 
when LKA is deactivated. 

W
o

rk
 Z

o
n

es
b
 

Modifiers to Initial / Final  
With LDW: 0.50 / 0.80 
Without LDW: 0.50 / 0.80 

Modifiers to Initial / Final 
With LDW: 0.70 / 0.90 
Without LDW: 0.70 / 0.90 

Modifiers to Initial / Final 
With LKA: 0.75 / 0.95 
Without LKA: 0.75 / 0.95 

Modifiers to Initial / Final 
With LKA: 0.80 / 0.98 
Without LKA: 0.80 / 0.98 

Warning systems may issue false 
warnings or fail to activate in the presence 
of ad hoc changes to traffic patterns (e.g., 
lane shifts) or fail to activate if the visual 
environment is excessively complex. Ad 
hoc nature of road construction may limit 
the ability to overcome limitations with 
technological maturity. 

Warning systems may issue false 
warnings or fail to activate in the presence 
of ad hoc changes to traffic patterns (e.g., 
lane shifts) or fail to activate if the visual 
environment is excessively complex. Ad 
hoc nature of road construction may limit 
the ability to overcome limitations with 
technological maturity. ACC may help 
avoid rear-end crashes in stop-and-go 
traffic in work zone. 
 

AEB may be beneficial in work zones and 
its performance should not be reduced 
greatly. LKA is greatly limited by temporary 
lane markings, lane shifts, etc. 

Current systems often struggle in work 
zones, but there is opportunity for 
improvement with technological maturity. 
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 Package A: Package B: Package C: Package D: 

Probability of system usec 
 Initial / Final 

LDW: 0.20 / 0.90 
All others: 0.80 / 0.90 

Initial / Final 
LDW: 0.05 / 0.90 
All others: 0.20 / 0.90 

Initial / Final 
LKA: 0.40 / 0.90 
All others: 0.80 / 0.90 

Initial / Final 
LKA: 0.10 / 0.90 
All others: 0.20 / 0.90 

Will vary by warning system. Research 
has shown that many drivers deactivate 
LDW but keep other warning systems 
active. 

ACC is likely to be used most frequently 
on long highway drives but infrequently in 
other contexts. Future systems may be 
used in a wider array of driving contexts as 
the technology matures. 

Research has shown that many drivers 
deactivate LKA but keep other collision 
intervention systems active. Also, many 
vehicles retain last setting for lane-keeping 
features but default AEB to on after every 
ignition on-off cycle, increasing probability 
that LKA will be deactivated but AEB will 
remain activated. Probability of use likely 
to increase with technological maturity. 
 

DDA is likely to be used most frequently 
on long highway drives but infrequently in 
other contexts. Future systems may be 
used in a wider array of driving contexts as 
the technology matures. Also note that 
these values include misuse and abuse of 
system, e.g., by using system outside of 
operational design domain. 

FCW: forward collision warning; LDW: lane departure warning; BM: blindspot monitoring; PD: pedestrian detection; ACC: adaptive cruise control; ABE: automatic 
emergency braking; LKA: lane keeping assistance; ESA: emergency steering assistance; DDA: dynamic driving assistance (i.e. simultaneous operation of ACC and LKA) 
 
a. Base effectiveness indicates proportion of crashes prevented by technology shown in column, assuming ideal conditions (absence of hazards that reduce system 
effectiveness). Lane-departure crashes and non-lane-departure crashes considered separately due to research indicating that consumers are more likely to deactivate lane 
departure warning and lane keeping assistance systems than other systems. 
b. Reduction in effectiveness of technology shown in column in the presence of the hazard indicated. When the hazard is present, the system effectiveness is multiplied by 
the value shown. A value of 1 indicates no reduction in effectiveness for the hazard listed; 0 indicates that the system has no effectiveness when the hazard is present. 
Lane-departure and non-lane-departure crashes considered separately. 
c. For ACC and DDA, probability of system use denotes the probability that the technology is engaged at any given time. For collision intervention systems (AEB, LKA), this 
represents probability that the system is turned on (not deactivated). For warning systems, this represents the probability that the system is turned on and that the driver is 
responsive to warnings. Probability of system use was modeled in a “step-down” approach such that if systems within a higher package were not in use, the effectiveness 
and probability of use of next lower system would apply. Within each package, lane-keeping features were considered separately from other features where applicable due 
to research indicating lower probability of use of lane-keeping features. 
d. Initial value represents value assumed in base year (2017). The final value represents value assumed in 2050 given anticipated technological maturity. Values in 
intermediate years were modeled as an “S-shaped” curve between initial value in the base year and final value in 2050. 
Effectiveness estimates were determined through literature reviews and discussions within the research team. The table briefly includes the research team’s collaborative 
thinking under each estimate. These data points represent best estimates at the time of this study; however, additional research is needed to refine these estimates, given 
the dearth of information on many of these technologies under these specific scenarios.  
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Appendix B. Parameter values used to model best estimate, high uptake & use, 
and low uptake & use scenarios. 

 
Parameter 

Best  
Estimate 

High  
Uptake & Use 

Low  
Uptake & Use 

Attractiveness weight 0.5 0.7 0.3 

Industry learning effectiveness 0.5 0.7 0.3 

Learning speed 0.1 0.5 0.02 

Initial perceived safety relative to actual safety 0.2 0.5 0.00 

Technology usage modifier 1 1.5 0.5 
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